4. Incorporation of $[2^{-13}C]$ -Sodium Acetate into Cytochalasin D (2) by Zygosporium masonii. The method described above was used, starting with 519 mg of $[2^{-13}C]$ -sodium acetate (90% isotopic purity), to produce 131 mg of cytochalasin D (2). An 85 mg portion was recrystallized as above to give 56 mg of pure material.

REFERENCES

[1] C. R. Lebet & Ch. Tamm, Helv. 57, 1785 (1974).

- [2] M. Binder & Ch. Tamm, Angew. Chem. 85, 369 (1973); Internat. Ed. 12, 370 (1973).
- [3] M. Binder, J. R. Kiechel & Ch. Tamm, Helv. 53, 1797 (1970).
- [4] K. Nakanishi, R. Crouch, I. Miura, X. Dominguez, A. Zamudio & R. Villareal, J. Amer. chem. Soc. 96, 609 (1974) and references cited therein.
- [5] D. C. Aldridge, J. J. Armstrong, R. N. Speake & W. B. Turner, J. chem. Soc. (C) 1967, 1667; D. C. Aldridge, W. B. Turner, J. chem. Soc. (C) 1969, 923; H. Minato, M. Matsuumoto, J. chem. Soc. (C) 1970, 38.
- [6] W. Rothweiler & Ch. Tamm, Helv. 53, 696 (1970).
- [7] R. R. Ernst, J. chem. Physics 45, 3845 (1966).
- [8] G. Jikeli, W. Henrig & H. Gunther, J. Amer. chem. Soc. 96, 323 (1974); R. A. Archer, R. D. G. Cooper, P. V. Demarco & L. R. F. Johnson, Chem. Commun. 1970, 1291.
- [9] W. Rothweiler & Ch. Tamm, Exper. 22, 750 (1966); M. Binder & Ch. Tamm, Helv. 56, 966 (1973).

192. Spezifisch $\pi \rightarrow \pi^*$ -induzierte Reaktionen von γ -Dimethoxymethylcyclohexen-2-onen: 1,3-Umlagerung und Wasserstoffabstraktion durch das α -Kohlenstoffatom¹)

von Jean Gloor²⁶) und Kurt Schaffner^{2b})

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, 8006 Zürich

und

Département de Chimie Organique, Université de Genève, 1211 Genève 4

(10. VI. 74)

Summary. When α,β -unsaturated γ -dimethoxymethyl cyclohexenones are excited to the $S_2(\pi,\pi^*)$ state, certain unimolecular reactions can be observed to compete with $S_2 \rightarrow S_1$ internal conversion. These reactions do not occur from the $S_1(n,\pi^*)$ or the lowest $T(\pi,\pi^* \text{ and } n,\pi^*)$ states. They comprise the radical elimination of the formylacetal substituent (cf. 8, $9 \rightarrow 32 + 33$), $\gamma \rightarrow \alpha$ formylacetal migration (cf. $6 \rightarrow 27$, $8 \rightarrow 30$, $9 \rightarrow 34$, $12 \rightarrow 37$), and a cyclization process involving the transfer of a methoxyl hydrogen to the α carbon and ring closure at the β position (cf. $6 \rightarrow 28$, $8 \rightarrow 31$, $12 \rightarrow 38$, $20 \rightarrow 40 + 41$).

The quantum yield of the ring closure $20a \rightarrow 40a + 41a$ is 0.016 at ≤ 0.05 M concentration. It is independent of the excitation wavelength within the $\pi \rightarrow \pi^*$ absorption band (238-254 nm), but $\Phi(40a + 41a)$ decreases at higher concentrations. According to the experimental data the reactive species of these specifically $\pi \rightarrow \pi^*$ -induced transformations is placed energetically higher than the $S_1(n,\pi^*)$ state, and it is either identical with the thermally equilibrated $S_2(n,\pi^*)$ state, or reached via this latter state.

^{1) 77.} Mitteilung der ETH-Reihe über Photochemische Reaktionen [1].

²⁾ a) Auszugsweise der Dissertation von J.G. (ETH, Zürich, 1974) entnommen. b) Korrespondenz an die Adresse in Genf zu richten.

The linear dienone 14 undergoes a similar $\pi \to \pi^*$ -induced cyclization ($\to 42$) whereas the benzohomologue 26 proved unreactive, and the dienone 22 at both $n \to \pi$ and $\pi \to \pi^*$ excitation only gives rise to rearrangements generally characteristic of cross-conjugated cyclohexadienones.

Wir berichten im folgenden über α,β -ungesättigte cyclische Ketone, die sich photochemisch dadurch auszeichnen, dass sie spezifisch Reaktionen aus einem höheren elektronischen Anregungszustand eingehen. Aus den tiefstliegenden Anregungszuständen $[S_1(n,\pi^*), T_{1,2}(n,\pi^* \text{ bzw. } \pi,\pi^*)]$ werden diese Prozesse nicht beobachtet. Die reaktive Molekel wird durch Lichteinstrahlung in der zweiten Absorptionsbande erzeugt $(\pi \rightarrow \pi^*$ -Anregung), nicht aber durch längerwelliges Licht (daher «spezifisch $\pi \rightarrow \pi^*$ -induzierte Reaktionen»). Die Reaktionen umfassen eine $(\gamma \rightarrow \alpha)$ -Wanderung des gesättigten Kohlenstoffatoms eines Ringsubstituenten (formal eine sigmatrope suprafaciale 1,3-Verschiebung) sowie eine intramolekulare Wasserstoffabstraktion durch das α -Kohlenstoffatom des Enons³).

Synthese der Acetal-enone. – Die Synthesen der photochemischen Substrate sind in den Schemas 1-3 zusammengefasst.

Schema 1. Synthese der Dimethoxymethyl- bzw. Äthylendioxymethyl-cyclohexenone 6, 8 und $9(-d_6)^4$)

Reaktionsbedingungen: $1 = (CH_2OH)_2/p$ -TsOH/Bz, Rückfluss. $2 = (i-Bu)_2AlH/Åther, -80^{\circ}$. $3 = HCl/Aceton, RT. 4 = Py-SO_3/Me_2SO/Et_3N, RT. 5 = konz. HCl/MeOH, RT. 6 = MsOH/Bz, RT. 7 = D_2O/NaOH/Dioxan, Rückfluss.$

Die Konstitutionsformeln der Verbindungen 8, $9(-d_6)$, $12(-d_{5,6})$, 14, $20a(-d_6)$, b, 22 and 26 ergeben sich zwangsläufig aus den betreffenden Synthesegängen und sind zudem lückenlos durch UV.-, IR.-, NMR.- und MS.-Daten belegt (siehe exp. Teil). Die Konfigurationszuordnung der Methylgruppen an C(8) und C(10) von 20a (cis) und 20b (trans) wurde rückschliessend aus dem Resultat der Röntgendiffraktionsanalyse des einen Photoproduktes (40a, vide infra) getroffen.

1816

Ein Teil dieser Resultate bildete bereits Gegenstand von Kurzmitteilungen [2] und Referaten
 [3]. Ferner wird gleichzeitig von Karvaś, Marti, Wehrli, Schaffner & Jeger [4] eine Arbeit über Anwendungen und erweiterte Untersuchungen auf dem Steroidgebiet veröffentlicht.

⁴⁾ Alle Verbindungen sind racemisch. RT. = Raumtemperatur.

UV.-Bestrahlungen. – Die Bestrahlung von 8 in Hexan mit Wellenlängen $\geq 313 \text{ nm} \ (n \rightarrow \pi^*\text{-Anregung})$ führte ausschliesslich⁵) zur hinreichend bekannten Doppelbindungsverschiebung (Schema 4: 8 \rightarrow 29) [5]. Wenn aber statt langwelligen UV.-Lichts solches von 254 nm ($\pi \rightarrow \pi^*\text{-Anregung}$) verwendet wurde, beobachtete man neu die zusätzliche Fragmentierung zu einem Gemisch der doppelbindungsisomeren Dimethylcyclohexenone 32 und 33 sowie die Ausbildung von 30 und 31 (zwei Epimere). Nach vollständigem Umsatz von 8 betrug die gas-chromatographisch bestimmte Ausbeute ca. 4% 29⁵), 6% 30 und 45% 31 nebst kleineren Mengen an 32 und 33. Analog spezifisch $\pi \rightarrow \pi^*\text{-induzierte Photoisomerisierungen waren auch mit$ 6 zu erzielen, wobei das Mengenverhältnis der Produkte 27 und 28 in Isooctan undMethanol (Gesamtausbeuten ca. 30%) stark variierte (siehe Tabelle).

Die Verbindung 9 lieferte durch 254-nm-Bestrahlung in 2-Methyltetrahydrofuran kein Cyclisierungsprodukt, sondern lediglich Fragmentierungsprodukte (32 und 33) und das umgelagerte Isomere 34^5). In einem Mischexperiment mit je $0,1 \le 8$ und 9-d₆ wurden als 1,3-Umlagerungsprodukte ausschliesslich nicht markiertes Dimethylacetal 30 und deuteriertes Äthylenacetal 34-d₆ gebildet (*Schema 5*).

Das Acetal-enon 12 – ein zur bicyclischen Verbindung erweitertes Analogon von 8 – verhielt sich photochemisch ähnlich (*Schema* 6). Bestrahlungen mit Wellenlängen > 340 nm in Methanol und in t-Butylalkohol ergaben nur sehr langsame Umsätze unter Bildung mehrerer Produkte, von welchen bisher einzig das auch auf einem anderen Weg hergestellte (*Schema* 9) Bicyclo[3.1.0]hexanon-Isomere 36 durch gaschromatographische Vergleiche nachgewiesen werden konnte. In Isooctan, Benzol und Acetonitril dominierte hingegen bei der $n \to \pi^*$ -Anregung die bedeutend raschere Doppelbindungsverschiebung 12 \to 35. Durch 254-nm-Bestrahlung bildeten sich wiederum neu, je nach Lösungsmittel praktisch allein oder auch in Konkurrenz zur

Ausgangsketon		Lösungsmittel	Produktverhältnis 27 bzw. 37 ^b) 28 bzw.	
0,082м	6	Isooctan	an 1	1 °)
0,082м	6	Methanol	1	(Spuren) °)
0,067 м 🛛	12	Isooctan	1	6ª)
0,067 м	12	<i>t</i> -Butylalkohol	2	1 ^d)
0,067 м	12	Methanol	10	1 ª)

Tabelle. Lösungsmittelabhängigkeit der Produktverhältnisse 27/28 aus 6 und 37/38 aus 12ª)

a) Bestrahlung mit 254 nm.

b) Bestimmt als Cyclopropylketon **39**.

c) Geschätzt mittels NMR. am Rohgemisch.

d) Geschätzt mittels Gas-Chromatographie.

⁵) Diese quantitativen Angaben beziehen sich nur auf definierte, chromatographisch isolierbare Produkte. Speziell aus den Verbindungen 8, 9, 12 und 14 wurden photochemisch in z.T. erheblichen Mengen amorphe, schwerflüchtige Produktegemische gebildet, die verworfen wurden und hier unberücksichtigt bleiben. Ausserdem ist zu beachten, dass die quantitative Erfassung der β,γ-ungesättigten Ketone 29 und 35 insofern schwierig ist, als die Rückisomerisierung zu den konjugierten Enonen bereits beim Stehen im Dunkeln bei Zimmertemperatur erfolgen kann (vgl. dazu [5b]). Es ist möglich, dass die photochemische Doppelbindungsverschiebung z. B. im Fall von 9 lediglich infolge dieser thermischen Labilität gas-chromatographisch nicht erfasst wurde.

Schema 2. Synthese der Dimethoxymethyl-octalone 12 (-d_{5,6}) und 20a(-d₆), b sowie der Dimethoxymethyl-hexalone 14 und 22⁴)

a = cis-, b = trans-Konfiguration der Methylgruppen. Reaktionsbedingungen: 5, 7 = siehe Schema 1. 8 = CrO₃/Py/CH₂Cl₂, RT. 9 = konz. HCl/CD₃OD, RT. 10 = Chloranil/t-BuOH, Rückfluss. 11 = 1,3-Dichlorbut-2-en/NaH/KJ/HCONMe₂, RT. 12 = konz. H₂SO₄/AcOH, 0°. 13 = Pyrrolidin/Bz, Rückfluss - AcONa/AcOH, Rückfluss. 14 = (i-Bu)₂AlH/Äther, 0°. 15 = 2,3-Dichloro-4,5-dicyano-p-benzochinon/Dioxan, Rückfluss.

Doppelbindungsverschiebung, Umlagerungs- (37) und Cyclisierungsprodukte (38). Die Verbindung 37 isomerisierte sich im Verlauf der Bestrahlung weiter zum Cyclopropylketon 39, das unter den angewandten Bedingungen stabil ist. Die Isolierung von 37 war deshalb relativ schwierig und gelang nur in kleinen Mengen. Eine Probe

Schema 4. Resultate der UV.-Bestrahlung von 6, 8 und 94)

davon wurde durch Triplett-Sensibilisierung (Bestrahlung von 37 in Acetonlösung mit 254 nm) praktisch quantitativ in 39 umgewandelt. Das Verhältnis der Photoprodukte von 12 (38 und 39 bzw. 37) variierte stark in Isooctan und alkoholischen Lösungsmitteln (siehe Tabelle). Präparative Ansätze zur Gewinnung des [4.4.3]-12-Oxapropellans 38 ergaben Ausbeuten von 40% nach chromatographischer Isolierung an Kieselgel, wenn die Bestrahlung in einem Zweiphasensystem aus Hexan und

Schema 5. UV.-Bestrahlung eines Gemisches von 8 und 9-d₆⁴)

Dithionit enthaltender wässeriger Natriumhydroxidlösung unter starkem Rühren ausgeführt wurde, um das Produkt 35 kontinuierlich in das Ausgangsmaterial 12 zurückzuisomerisieren.

Die Verbindung **20a** ergab in Isooctan keine feststellbaren Produkte, wenn Wellenlängen > 340 nm während Perioden eingestrahlt wurden, die unter vergleichbaren Reaktionsbedingungen für einen praktisch vollständigen Umsatz von **12** zum β , γ ungesättigten Isomeren **35** ausreichten. Zum Nachweis des unreaktiven Triplettzu-

Figur 1. Quantenausbeuten $\Phi(-20a)$ und $\Phi(40a + 41b)$ als Funktion der Anfangskonzentration von 20a.

Bestrahlungen in Isooctan-Lösung mit 245 nm; Analysen mittels UV.-Spektroskopie (○) bzw. Gas-Chromatographie (■) Schema 6. Resultate der UV.-Bestrahlung von 12, 12-d₅ und 12-d₆⁴)

standes von 20a durch bimolekulare Energieübertragung wurde die Bestrahlung in Gegenwart von $0,18 \le 1,3$ -Cyclohexadien wiederholt. Sie resultierte in der Triplettsensibilisierten Dimerisierung des Diens [6]. Bei der $\pi \rightarrow \pi^*$ -Anregung mit 254 nm hingegen wurden 20a und 20b in die entsprechenden 1'-epimeren Cyclisierungsprodukte 40a/41a und 40b/41b in den ungefähren Mengenverhältnissen 3:2 bzw. 3:1 umgewandelt (Schema 7). Die gas-chromatographische Überprüfung beider Photolysegemische liess keine anderen Produkte erkennen. Nach vollständigem Umsatz von 20a (0,06 m) und chromatographischer Auftrennung an Kieselgel konnten die kristallinen Verbindungen 40a und 41a in einer Gesamtausbeute von 77% gewonnen werden.

Eine Bestrahlungsreihe mit verschiedenen Konzentrationen von **20a** zeigte eine markante Abnahme von $\Phi(40a + 41b)$ mit zunehmender Anfangskonzentration ab

Schema 7. Resultate der UV.-Bestrahlung von 20a, 20(-d6) a und 20b4)

ca. 0,05 m 20 a, während $\Phi(-20 a)$ im Bereich von <0,06 m keine derartige Konzentrationsabhängigkeit zeigte (siehe Fig. 1). Parallel mit der Abnahme von $\Phi(40 a +$ 41 a) war die zunehmende Bildung unlöslichen Materials zu beobachten, das nicht

Figur 2. UV.-Absorptionsspektrum von 20a und Quantenausbeuten der Reaktion 20a → 40a + 41a bei verschiedenen Wellenlängen.

Alle Messungen in $1.7 \cdot 10^{-4}$ und $4 \cdot 10^{-2}$ M Isooctan-Lösungen

näher charakterisiert wurde. Die Quantenausbeuten der Reaktion $20a \rightarrow 40a + 41a$ bei grosser Verdünnung ($\leq 0,04$ M) und bei verschiedenen Wellenlängen (238, 245 und 254 nm) innerhalb des $\pi \rightarrow \pi$ -Absorptionsbereichs betrugen durchwegs 0,016 (siehe Fig. 2).

Die photochemische Umsetzung der deuterierten Verbindungen 12-d₅, 12-d₆ und 20(-d₆)a in Isooctan und in *t*-Butylalkohol zu den entsprechenden Cyclisierungsprodukten 38-d₅ (und ferner zu 39-d₅), 38-d₆ (Schema 6) und 40(-d₆)a (Schema 7) verlief in jedem Fall unter Beibehaltung des vollen ursprünglichen Deuteriumgehaltes. Die Überprüfung des Isotopengehaltes des Produkte erfolgte durch Integration der ¹H-NMR.-Spektren⁶). Die Bestrahlung äquimolarer Gemische von 12 + 12-d₆ sowie 20a + 20(-d₆)a und die anschliessende massenspektrometrische Auswertung der Produktegemische 38 + 38-d₆ und 40a + 40(-d₆)a ergab für die Photocyclisierung kinetische H/D-Isotopeneffekte von 2,7 bzw. 1,75.

Schema 8. Resultate der UV.-Bestrahlung von 14, 22 und 264)

⁶) In unserer ersten Kurzmitteilung [2a] wurde erwähnt, dass das in t-Butylalkohol gebildete Photoprodukt **38-d**₆ einen Fehlbetrag von 35% eines Deuteriums durch partiellen Verlust der Isotopenmarkierung an C(2) aufwies. Dieses Resultat ergab sich aus GC./MS.-Kombinationsanalysen, welche direkt mit der Reaktionslösung ausgeführt worden waren. Nachträgliche NMR.-Messungen zeigten nun aber, dass dieser Deuteriumverlust erst im Verlauf des Analysengangs eingetreten sein kann. Die Interpretation in [2a], dass die Einbusse an Deuterium auf den protischen Austausch auf der Stufe eines hydroxylhaltigen Zwischenproduktes der Photocyclisierung (Reaktionsvariante *a*, Schema 14) zurückzuführen sei, ist deshalb gegenstandslos.

Das linear konjugierte Acetal-dienon 14 lieferte in Isooctan-Lösung (0,067 M)nach längerer Bestrahlungsdauer mit Wellenlängen > 340 nm lediglich amorphe, schwerlösliche Produkte, während mit 254 nm zusätzlich und als einziges Isomeres das Cyclisierungsprodukt 42 in einer Ausbeute von $25\%^{5}$) gebildet wurde (*Schema 8*). Das gekreuzt konjugierte Dienon 22 hingegen ergab unabhängig von den eingestrahlten Wellenlängen (254 nm oder > 340 nm) stets dasselbe Produktegemisch, in welchem das Bicyclo[3.1.0]hexenon-Isomere 43 und ein Phenol vom Typus 44 dominierten, und die Verbindung 26 – ein Benzhomologes von 14 – erwies sich bei der Bestrahlung in beiden Wellenlängenbereichen als weitgehend photostabil.

Strukturaufklärung der Photoprodukte. – Als hinlänglich schlüssige Strukturbeweise für die Photoprodukte der monocyclischen Acetal-enone 6, 8 und 9 (Schema 4) genügen die spektroskopischen Daten. Das β , γ -ungesättigte Keton 29 weist im NMR. ein durch Feinkopplungen verbreitertes Singulett bei 4,82 δ auf, das den Methylenprotonen der exocyclischen Doppelbindung zuzuordnen ist. Ausserdem isomerisiert sich das Produkt schon beim Stehen in Tetrachlorkohlenstoff bei Raumtemperatur zum α , β -ungesättigten Ausgangsmaterial (8) zurück.

Die beiden Produkte einer 1,3-Wanderung der Dimethoxy- und Äthylendioxy-Methylgruppen, 30 bzw. 34, zeigen im IR. Ketonbanden um 1720 cm⁻¹ und im NMR. je ein Singulett um 1,7 δ für die olefinisch gebundenen Methylgruppen. Ferner tritt das C(2)-Proton als breites Dublett um 2,8 δ auf, entstanden durch Kopplung mit dem Acetal-Methinproton bei 4,45 bzw. 5,04 δ (30: I = 5,2 Hz; 34: 3,5 Hz), was für 30 durch Doppelresonanzexperimente bestätigt wurde. In den Massenspektren erscheinen die Dimethoxymethyl- und Äthylendioxymethyl-Ionen als Hauptfragmente bei m/e = 75 bzw. 73. Die epimeren Cyclisierungsprodukte 31 sind durch IR.-Ketonbanden um 1720 cm⁻¹ und ein Massenspektrum gekennzeichnet, in welchem anstelle des für Dimethylacetale typischen Fragments von m/e = 75 u.a. das durch den Verlust eines Methylformiat-Äquivalents gebildete Ion von m/e = 138 auftritt. Die NMR.-Spektren weisen Singulettsignale für je zwei anguläre Methylgruppen, eine Methoxygruppe, die Methylenprotonen der Acetalbrücke (um 3,6 δ) sowie das Acetal-Methinproton (um 4,6 δ) auf. Es gibt keine direkten Hinweise zugunsten der Zuordnung des Konfigurationsunterschieds an C(1). Sie beruht lediglich auf der Annahme, dass der Ringschluss an C(9) bevorzugt zur cis-Verknüpfung führt.

Die Spektraldaten von 27 und 28 sind im Wesentlichen analog zu denjenigen von 30/34 und 31. Das Fehlen der olefinisch gebundenen Methylgruppe im Ausgangsketon (6) führt im NMR.-Spektrum von 27 zu einer zusätzlichen Kopplung des C(2)-Protons (Doppeldublett bei 2,9 δ) mit dem Vinylproton bei 5,46 δ (J = 4,5 Hz), das seinerseits Feinkopplungen mit den allylischen Methyl- und Methylenprotonen aufweist. Durch Doppelresonanz mit Einstrahlung bei 2,9 δ konnten denn auch die Signale des Acetal-Methinprotons (Dublett bei 4,43 δ , J = 4,5 Hz) und des Vinylprotons entkoppelt werden. Ferner bilden die Methylenprotonen der Acetalbrücke in 28 ein ABM-System mit J = 7, 8 und 18,5 Hz, das sich im Doppelresonanzexperiment durch Einstrahlung bei 2,5 δ (H-C(9)) zu einem AB-System bei 3,88 und 4,19 δ (J = 18,5 Hz) vereinfachte.

Die Dimethyl-cyclohexenone 32 und 33 schliesslich sind vor allem durch die UV.und IR.-Daten der α,β - bzw. β,γ -ungesättigten Ketongruppierung (32: $\varepsilon_{\max}^{235nm}$ = 11100, $\varepsilon_{\max}^{309nm} = 35$; $\nu_{C=0, C=C} = 1667$, 1634 cm⁻¹. 33: $\varepsilon_{\max}^{279nm} = 63$; $\nu_{C=0} = 1725$ cm⁻¹) und NMR.-Signale im Frequenzbereich für Methylgruppen und olefinische Protonen charakterisiert.

Die Strukturaufklärungsarbeiten für die Photoprodukte von 12 sind in den Schemas 9 und 10 zusammengefasst. Der gas-chromatographische Nachweis des Umlagerungsproduktes 36 im Reaktionsgemisch wurde durch Ko-injektion mit einem synthetischen Präparat erbracht, dessen Herstellung über die bekannte Lumiketon-

Reaktionsbedingungen: 1, 2, 5, 8, 15 = siche Schemas 1 und 2. 16 = $\text{LiAlD}_4/\text{Åther}$, Rückfluss. 17 = $\text{Ac}_2\text{O}/\text{Py}$, RT. 18 = $\text{HCl}/\text{H}_2\text{O}/\text{Aceton}$, RT. 19 = 254 nm/t-BuOH, RT. 20 = LiAlH_4/Py , RT. 21 = $\text{NaBH}_4/\text{MeOH}$, RT. 22 = $(\text{CH}_2)_2\text{Zn}J_2/\text{Åther}$, 0°. 23 = $\text{Na}_2\text{CO}_3/\text{MeOH}$, RT. 24 = MsCl/Py, RT. 25 = $\text{CrO}_3/\text{H}_2\text{SO}_4/\text{Aceton}$, RT. 26 = p-TsOH/H₂O/Aceton, RT. 27 = $\text{K}_2\text{CO}_3/\text{MeOH}$, RT.

Umlagerung eines gekreuzt konjugierten Cyclohexadienons ($49 \rightarrow 50$; vgl. [7]) als Schlüsselschritt erfolgte. Die Umwandlung des Photocyclisierungsproduktes **38** in das Cyclopropylketon-mesylat **57-d**₂ und dessen Herstellung aus **45** sind bereits früher [2a] ausführlich besprochen worden. Dasselbe gilt auch für die deuterierten Produkte **38-d**₅ und **38-d**₆.

Das 1,3-Umlagerungsprodukt **37** weist im IR.-Spektrum eine Ketobande bei 1720 cm⁻¹ auf, und im NMR.-Spektrum sind die Methinprotonen an C(1) und der Acetalgruppierung durch ein AX-Spektrum bei 2,88 δ bzw. 4,58 δ (J = 5 Hz) vertreten.

Schema 10. Strukturbeweis des Photoproduktes 39⁴)

Reaktionsbedingungen: 8, 21 = siche Schemas 2 und 9. $28 = \text{Li/NH}_3$, -40° . $29 = (\text{CO}_2\text{H})_2/\text{MeOH}$, RT. $30 = \text{CrO}_3/\text{H}_2\text{SO}_4/\text{Accton}$, 0° .

Die im Schema 10 wiedergegebenen chemischen Umwandlungen stellen zusammen mit H/D-Austauschexperimenten an $39-d_5$ (Schema 6) und 63 sowie den betreffenden Spektraldaten einen lückenlosen Strukturbeweis für die Verbindung 39 dar. Die Behandlung von $39-d_5$ mit Kaliumhydroxid in wässerigem Methanol resultierte in einem Austausch von zwei Deuteriumatomen gegen Wasserstoff $(\rightarrow 39 \cdot d_2)$. Das NMR.-Spektrum von 39 in Deuteriobenzol zeigt nebst den beiden Methoxylsignalen speziell ein AX-Spinsystem der Cyclopropyl- und Acetal-Methinprotonen (1,55 bzw. 4,31 δ , J = 7 Hz), das in den Spektren von **39-d**₃ und 39-d₅ zu einem Singulett des letzteren Protons reduziert ist. Die mit einer Methoxyl-Eliminierung verbundene reduktive Dreiringöffnung von 39 ist spektralanalytisch direkt durch die Kombination von drei Merkmalen nachweisbar. So erhöht sich die Keton-IR.-Frequenz von 1723 (39) auf 1740 cm⁻¹ (63; in CCl₄), und es wurde ein zusätzliches Proton in α -Stellung zur Ketogruppe eingeführt, wie dies der basenkatalysierte Austausch von insgesamt drei Wasserstoffen gegen Deuterium in 63 aufzeigte. Schliesslich belegen die MS.- und NMR.-Spektren die Umwandlung der bisangulären Dimethoxymethylmethano-Teilstruktur in eine anguläre 2-Methoxyvinylgruppe. Das MS.-Spektrum von **39** ist durch ein Hauptfragment von m/e = 75 (Dimethoxymethyl-Ion) und einem Molekel-Ion von 21% relativer Intensität gekennzeichnet. Das Molekel-Ion von 63 ist hingegen deutlich stabiler (100%) und es treten bei m/e = 163 (80%) und 138 (67%) vermehrt Fragmente in Erscheinung, welche der Abspaltung von Methoxyl bzw. C₃H₅O aus dem Fünfring zugeschrieben werden können (die entsprechenden MS.-Werte von 63- d_3 liegen bei m/e = 166 und 139). Ferner werden das AX-Spektrum und die zwei Dreiprotonensingulette (3,15 und 3,20 δ) der Dimethoxymethylmethano-Teilstruktur von **39** im NMR.-Spektrum von 63 durch eine neue AX-Signalgruppe bei 4,85 und 6,36 δ und ein Methoxyl-Singulett bei 3,54 δ ersetzt. Die Spinkopplungskonstante von 13 Hz der beiden Vinylprotonen gestattet keine zuverlässige Konfigurationszuordnung der Doppelbindung in 63. Die schrittweise Umwandlung von **39** in das γ -Lacton **66** (IR.: 1770 cm⁻¹ in CCl₄) erbringt den Beweis der *cis*-Anordnung von Keto- und Dimethoxymethylgruppe am Dreiring von 39. Auf die endo-Lage des Methoxyls von 65^7) wurde anhand der sehr kleinen Spinkopplung (<1 Hz) zwischen CH(9) und CH(10) geschlossen (der dihedrale Winkel zwischen den beiden Protonen beträgt ca. 100° in 65 und ca. 20° in der epimeren exo-Strukturvariante, gemessen an Dreiding-Modellen).

Schema 11. Chemische Umwandlungen der Photoprodukte 40 a und 41a4)

Reaktionsbedingungen: 5, 23, 30 = siehe Schemas 1, 9 bzw. 10.31 = AcOH/p-TsOH, RT.

Die Strukturaufklärung der 8,10-*cis*-Dimethyl-Photoprodukte **40a** und **41a** beruht auf der schon früher [2b] ausführlich besprochenen 1'-Epimerisierung der beiden Verbindungen und ihre Umwandlung in das Keto- γ -lacton **69** (*Schema 11*) sowie der Röntgendiffraktionsanalyse von **40a**⁸). Die *cis*-Anordnung des Wasserstoffs an C(1) zur angulären Methylgruppe an C(10) von **40**(-**d**₆)**a** ergibt sich aus der Analyse der C(1)- und C(3')-Methylenprotonensignale im NMR.-Spektrum von **40a**, beru-

⁷) Die *endo*-Bezeichnung bezieht sich auf die Anordnung zum Dodccangerüst, das als Basis der rationellen Nomenklatur für **65** dient (siehe exp. Teil).

⁸) Zur Röntgendiffraktionsanalyse von **40**a siehe auch die gleichzeitige Veröffentlichung von Bernardinelli & Gerdil [8].

hend auf der durch die Röntgendiffraktionsanalyse [8] bestimmten Konformation (vgl. **70**). Alle vier Protonen sind durch Doppeldublett-Signalgruppen vertreten, hervorgerufen durch geminale (H₁-H₂: J = 17 Hz; H₃-H₄: 9 Hz) und Fern-Spinkopplungen (J = 1 und 3 Hz). Der grössere der beiden letzteren Werte ist den Protonen H₁ und H₃ aufgrund der angenähert planaren W-Anordnung der sie verbindenden σ -Bindungen über C(1)-C(9)-C(3') zuzuordnen (vgl. dazu [9]). Dadurch ist auch die Identität des Wasserstoffatoms an C(1) von **40**(-**d**₆)**a** mit H₁ festgelegt (2,50 δ). In Übereinstimmung mit Zuordnung liegt das H₂-Signal bei tieferem Feld (3,02 δ) infolge der praktisch linearen Anordnung von O_(C=0)-H₂-O_(CH30) mit minimalen Abständen.

Das Gemisch der 8,10-*trans*-Dimethyl-Photoprodukte **40b** und **41b** konnte chromatographisch nicht in die Epimeren aufgetrennt werden. Die konstitutionelle Identität mit der **a**-Reihe folgt aus der weitgehenden Übereinstimmung der massgebenden IR.-Banden sowie des Massenspektrums des Gemisches mit den entsprechenden Daten der **a**-Isomeren. Im NMR.-Spektrum von **40b/41b** liessen sich nebst den angulären Methylsignalen (Dreiprotonen-Singulette bei 0,92 und 1,02 δ) je zwei Singulettsignale für die Methoxyl- (3,25 und 3,26 δ) und C(1')-Methinprotonen (4,07 und 4,17 δ) der beiden Epimeren feststellen.

Das Cyclisierungsprodukt **42** des linear konjugierten Acetaldienons **14** (*Schema 8*) liess sich durch katalytische Hydrierung in das gesättigte Oxapropellan **38** überführen, während die Photoisomeren des gekreuzt konjugierten Dienons **22** konstitutionell nur durch ihre Spektraldaten belegt sind. Die Bicyclo[3.1.0]hexenon-Teilstruktur von **43** ist mit einer UV.-Absorption bei 270 (Schulter) und 236 nm ($\varepsilon_{max} =$ 6800), einer IR.-Ketonbande von 1698 cm⁻¹ und den Doppeldublett-NMR.-Signalen bei 5,88 (J = 6 und 2 Hz) und 7,51 δ (J = 6 und 1,2 Hz) für die miteinander und zusätzlich mit dem Cyclopropylproton spin-gekoppelten olefinischen α - bzw. β -Protonen ausgewiesen⁹). Das phenolische Isomere **44** ist speziell im NMR.-Spektrum durch Signale einer aromatisch gebundenen Methylgruppe (2,04 δ) und von zwei *ortho*-ständigen Protonen (6,41 und 7,04 δ , J = 8,5 Hz) gekennzeichnet. Überdies sind in beiden Spektren die Signale der noch intakten geminalen Methyl-/Dimethoxymethyl-Gruppierung vertreten. Die auf diesen Daten beruhende Zuordnung der Strukturvarianten **43** und **44** entspricht den zu erwartenden Produkttypen, welche in den photochemischen Umlagerungssequenzen allgemein bevorzugt entstehen⁹).

⁹) Zur Photoisomerisierung von gekreuzt konjugierten Cyclohexadienonen und den Spektraldaten der Produkte vgl. [7] [10].

Diskussion. – Photochemische Untersuchungen von α,β -ungesättigten Ketonen beschränkten sich bisher trotz ihres grossen Umfangs zur Hauptsache auf die Einstrahlung von Wellenlängen > 280 nm (oder unselektive Einstrahlung im gesamten Absorptionsbereich), womit vorzugsweise der energetisch tiefstliegende erste Singulettzustand, $S_1(n,\pi^*)$, direkt besetzt wird. Im allgemeinen dominieren hier der $S_1 \rightarrow T$ Spin-Multiplizitätswechsel ("intersystem crossing") und Reaktionen aus einem der tiefliegenden Triplettzustände¹⁰). Die UV.-Absorptionseigenschaften der α,β -ungesättigten Ketone – häufig deutlich voneinander abgesetzte $n \rightarrow \pi^*$ - und $\pi \rightarrow \pi^*$ -Über-

¹⁰) Für Literaturreferate siehe [7] [11].

gänge – prädestinieren diese aber auch zum vergleichenden Studium der Photochemie bei selektiver Anregung zum zweiten Singulettzustand, $S_2(\pi,\pi^*)$. A priori kann erwartet werden, dass der Anregungszustand S_2 mindestens überwiegend durch die $S_2 \rightarrow S_1$ internal conversion ohne chemische Veränderung partiell desaktiviert wird. Dass aber auch chemische Reaktionen in Konkurrenz zum thermischen Abbau von S_2 treten können, wurde von uns bereits früher an verschiedenen Enon-Systemen gefunden. Diese Beispiele sind im Schema 12 zusammengestellt. Sie sind dadurch charakterisiert, dass entweder die durch $\pi \rightarrow \pi^*$ - Anregung ausgelösten Reaktionen sich von den auch aus S_1 zugänglichen Umwandlungen mechanistisch unterscheiden oder die tiefstliegenden Anregungszustände chemisch nicht reaktiv sind¹¹).

Natur des reaktiven Anregungszustandes. Die durch $n \to \pi^*$ -Anregung erzielbaren Umwandlungen der hier untersuchten Acetal-enone – Doppelbindungsverschiebung, Umlagerung zu Bicyclohexanon-Isomeren (z.B.: $12 \to 35 + 36$, Schema 6) – sind als Reaktionen der tiefstliegenden Triplettzustände bekannt [5]. Die Wellenlängen, welche für die 1,3-Verschiebung und die Cyclisierung (z.B.: $12 \to 37 + 38$) erforderlich sind, belegen, dass S₁ hierfür nicht ausreicht und die Anregung zu S₂ notwendig ist. Diese Photoreaktionen konkurrenzieren somit die S₂ \to S₁ internal conversion. Mit der Wellenlängen-Unabhängigkeit der Quantenausbeute für die Cyclisation $20a \to 40a + 41a$ innerhalb des $\pi \to \pi^*$ -Absorptionsbereichs (s. Fig. 2) ist ferner erwiesen, dass vibratorische Terme des ${}^1(\pi,\pi^*)$ -Zustandes keine Rolle spielen. Daraus folgt, dass das thermisch äquilibrierte Niveau von S₂(π,π^*) entweder mit dem Reaktivzustand identisch ist oder zur Erreichung des letzteren durchlaufen wird.

Reaktionsmechanismen. Die in den Verbindungen 6, 8, 9 und 12 (Schemas 4 und 6) auftretenden $\gamma \rightarrow \alpha$ -Verschiebungen des Formylacetal-Substituenten entspricht formal einer sigmatropen 1,3-Umlagerung, die nach den Woodward-Hoffmann'schen Regeln für konzertierte photochemische Prozesse [22] suprafacial mit Retention am wandernden Kohlenstoffatom ablaufen müsste. Es ist aber festzuhalten, dass zur Zeit kein stichhaltiger Nachweis zugunsten einer konzertierten Umlagerung vorliegt. Der Mischversuch mit 8 + 9- d_{β} (Schema 5) schliesst einen intermolekularen Austausch der Substituenten aus und dokumentiert damit lediglich eine, allein dafür noch unzureichende Randbedingung. Eine mit diesem Befund ebenso zu vereinbarende und deshalb auch zu berücksichtigende Reaktionsvariante kombiniert im photochemischen Primärschritt die Formylacetal-Wanderung mit der vor allem in der monocyclischen Reihe gleichzeitig feststellbaren Eliminierung des Substituenten $(z, B, 8 \rightarrow 32 + 33)$. Sie besteht in der photolytischen Spaltung zu einem Radikalpaar, das sich durch «Käfig»-Rekombination funter Ausbildung von Ausgangsmaterial (a) oder Umlagerungsprodukt (b)] sowie Dissoziation und Wasserstoffabstraktion aus dem Lösungsmittel [Bildung der Dimethylcyclohexenone (c)] wieder stabilisiert (vgl. Schema 13).

¹¹) Als weitere Beispiele von spezifisch π→π*-induzierten Reaktionen ungesättigter Ketonelassen sich die Dreiringöffnung eines gekreuzt konjugierten Spiro[5.2]octadienons [16], die Cyclisierung von 3,4-Dimethylpent-3-en-2-on zum Oxacyclobuten [17] und die Fragmentierung eines α,β-ungesättigten γ,δ-Epoxyketons zu einem Allen-diketon [18] aufführen. Ferner sind Wellenlängenabhängigkeiten beschrieben [19], die möglicherweise auf vibratorische Effekte (vgl. [20]) zurückzuführen sind. Für zusätzliche Literaturstellen siehe [21].

Schema 13. Reaktionsvariante mit Radikalpaar-Zwischenprodukt für die $\gamma \rightarrow \alpha$ -Formylacetal-Verschiebung⁴)

Die photochemische $1, 3-\gamma \rightarrow \alpha$ -Verschiebung eines gesättigten Kohlenstoffatoms ist unseres Wissens erstmals bei der Verbenon-Chrysanthenon-Isomerisierung beobachtet und bisher erst durch wenige Beispiele weiter belegt worden [23–25]. Sie alle betreffen ausnahmslos Umlagerungen von Ring-Kohlenstoffatomen, für die aus strukturellen Gründen eine Differenzierung der extremen Fälle einer konzertierten Wanderung und voller Dissoziation in ein Diradikal-Zwischenprodukt nicht ohne weiteres möglich ist. Die letztere Variante ist immerhin in einer photosensibilisierten Bicyclo[3.2.0]hept-3-en-2-on \rightarrow 7-Oxonorbornen-Umlagerung anhand der freien Rotation der 1,3-wandernden Methylengruppe während des Reaktionsverlaufs nachgewiesen worden [25].

Die Isomerisierung des Photoproduktes **37** zum Cyclopropylketon **39** entspricht einer für β , γ -ungesättigte Ketone charakteristischen Triplettreaktion, der Oxy-di- π methan-Umlagerung. Infolge des meist ungenügenden S \rightarrow T Multiplizitätswechsels dieser Chromophore ist dafür mehrheitlich eine Triplett-Sensibilisierung erforderlich¹²). Alle Anzeichen sprechen dafür, dass dies auch für **37** \rightarrow **39** zutrifft. So liess sich die Umlagerung auch an isoliertem **37** durch Energieübertragung von Aceton erzielen, und eine analoge Sensibilisierung durch Triplett-angeregtes **12** bei der 254nm-Bestrahlung dieses Ketons drängt sich schon deshalb auf, weil das β , γ -ungesättigte Keton **37** unter diesen Reaktionsbedingungen kein Licht absorbiert.

Für die Photocyclisierungen $6 \rightarrow 28, 8 \rightarrow 31$ und $12 \rightarrow 38$ kamen *a priori* zwei Reaktionswege in Betracht – beide mit der Abstraktion eines Methoxylwasserstoffatoms im photochemischen Primärschritt, die durch den kinetischen H/D-Isotopeneffekt von 2,7 in der bicyclischen Reihe angezeigt ist: einerseits eine Wasserstoffübertragung an den Ketonsauerstoff (vgl. *a*, Schema 14), gefolgt von Ringschluss und Ketonisierung des enolischen Diradikal-Zwischenproduktes, andererseits eine direkte Wasserstoffübertragung an das α -Kohlenstoffatom des Enons (*b*). Um die zu grosse Distanz zwischen Ketonsauerstoffatom und den Methoxylwasserstoffatomen in der Grundzustandsgeometrie hinreichend zu verringern, würde die Verwirklichung der Variante *a* eine Verdrillung des angeregten Enon-Chromophors voraussetzen, wie sie z. B. in der Konformation des T(π, π^*)-Zustandes solcher cyclischer Ketone

¹²) Siehe [26] für kürzliche Übersichtsartikel über die Photochemie von β, γ -ungesättigten Ketonen. Die nächstliegende Analogie zur Umlagerung in das Cyclopropylketon **39** findet sich in der Photoisomerisierung des unsubstituierten $\Delta^{9,10}$ -Octal-2-ons [27].

vorliegt [11]. Das Auftreten der Zwischenstufe(n) mit einer enolischen Hydroxylgruppe liesse überdies erwarten, dass bei der Cyclisierung der Di-(trideuteriomethoxy)-Verbindung 12-d₆ in einem alkoholischen Lösungsmittel das transferierte Deuterium protisch ausgetauscht würde. Die diesbezüglichen Experimente verliefen aber negativ, und es bestehen somit keine Anhaltspunkte für das Auftreten des Reaktionswegs a^{6}).

Die Verbindungen der Konstitution 20 wurden in die Untersuchung einbezogen, um die zweite Reaktionsvariante (b) zu testen. In beiden Diastereomeren ist, unabhängig von der Ringkonformation im angeregten Reaktivzustand, die Entfernung zwischen dem Ketonsauerstoffatom und den Methoxygruppen genügend gross, um eine Wasserstoffabstraktion durch den Sauerstoff mit grosser Wahrscheinlichkeit

auszuschliessen¹³). Dass die Photocyclisierung $(20 \rightarrow 40 + 41)$ dennoch gerade hier besonders sauber abläuft, darf als gesichertes Indiz zugunsten einer bisher in der Enon-Photochemie mit Ausnahme des nachfolgend erwähnten Falls präzedenzlosen Wasserstoffabstraktion durch die α -Stellung des Chromophors gewertet werden.

¹³) Nach Abschätzungen an Dreiding-Modellen unter Berücksichtigung der van der Waal-Radien betragen die Minimaldistanzen zwischen dem Ketonsauerstoff und den Methoxylwasserstoffatomen > 3,5 Å für 20 a und > 3 Å für 20 b (hier ungefähr in der für eine Wasserstoffabstraktion äusserst ungünstigen O → C-Achse).

Nakanishi et al. [28] fanden kürzlich, dass Taxinin und einige Derivate dieses Naturstoffs (Schema 15: 71) bei $n \to \pi^*$ -Bestrahlung oder Triplett-Sensibilisierung zu Iso-

meren vom Typus 72 cyclisiert werden. Dieser Ringschluss erfolgt offensichtlich unter Übertragung des allylischen C(3)-Wasserstoffs an das Enon- α -Kohlenstoffatom. In Anbetracht der äusserst nahe über der Doppelbindung angeordneten C(3)-H-Gruppe im starren Gerüst von 71 wird hier von den Autoren eine konzertierte $\sigma + \pi$ -Cycloaddition begünstigt.

Die – im Gegensatz zur Konzentrations-unabhängigen $\Phi(-20 a)$ – mit zunehmender Konzentration abnehmende Quantenausbeute der Produktbildung [Φ (40a + **41** a); siehe Fig. 1] ist mit dem im *Schema* 14 postulierten photochemischen Biradikal-Primärprodukt vereinbar. So mag dieses bei ausreichender Konzentration zusätzlich zur intramolekularen Cyclisierung auch intermolekulare Radikalreaktionen eingehen. Dieses Reaktionsmodell steht mit der Beobachtung in Übereinstimmung, dass bei der Bestrahlung in relativ hoher Konzentration auch noch schwerlösliche Nebenprodukte gebildet werden. Es muss aber auch die alternative Möglichkeit berücksichtigt werden, dass der reaktive Anregungszustand selbst in Konkurrenz zur intramolekularen Wasserstoffübertragung zu intermolekularen Reaktionen befähigt ist. Aus den Daten in Fig. 1 und einem $k_{\text{diff}} \sim 10^{10} \, \text{l} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$ für bimolekulare, diffusionskontrollierte Prozesse in Isooctan lässt sich eine maximale Lebensdauer (τ) von der Grössenordnung ca. 10-8 s der für den Konzentrationseffekt verantwortlichen Spezies abschätzen. Obwohl keine Lebensdauerdaten für $S_2(\pi,\pi^*)$ -Zustände konjugierter cyclischer Enone zur Verfügung stehen, erscheint dieser τ -Wert ungewöhnlich gross und würde besser auf einen höheren Triplettzustand¹⁴) oder aber einen adiabatisch modifizierten Anregungszustand der Konstitution 73¹⁵) (Schema 16) passen.

¹⁴) Der tiefstliegende T₁(π,π*)-Zustand von 20a besitzt eine Lebensdauer von 53 ms, gemessen in (Äther/Isopentan/Äthanol-5:5:2)-Glas bei 78 K.

¹⁵) Dazu ist zu bemerken, dass für 3,4-Dimethylpent-3-en-2-on eine Oxabicyclobuten-Struktur als tiefliegender reaktiver Anregungszustand ausgeschlossen worden ist [29]. Spezies **73** bietet zudem den Vorteil, eine zwangsläufige Begründung der Wasserstoffübertragung an das α -Kohlenstoffatom, C(1), zu liefern. Ferner liesse diese gegenwärtig hypothetische Formulierung einen Mechanismus für den physikalischen Energieabbau unter direkter Wiederherstellung des S₀-Ausgangsmaterials (*internal conversion* **73** \rightarrow **20** unter Umgehung des S₁-Niveaus) erwarten, wobei dafür speziell die Reorganisation der für die Wasserstoffübertragung ungünstigen *trans*-Anordnung von Dreiring und Dimethoxymethylgruppe in Frage kommt¹⁶).

Die photolytische Wasserstoffübertragung durch das Enon- α -Kohlenstoffatom ergänzt die Wasserstoffabstraktionsprozesse in dieser Verbindungsklasse, welche sich bisher auf Reaktionen der n,π^* - und π,π^* -Triplettzustände beschränkten. Eine Korrelation zwischen der tiefstliegenden Triplettkonfiguration und dem Modus der Wasserstoffabstraktion ergab sich z.B. aus den emissionsspektroskopischen und photochemischen Untersuchungen von Testosteron [$\rightarrow T_1(\pi,\pi^*)$, H an β -C] und 6,6-Difluor- Λ^4 -androsten-3,17-dion [$\rightarrow T_1(n,\pi^*)$, H an O] [30]:

$$O=C-C=C_{\beta} \cdot RH \xrightarrow{3(n,\pi^{*})} HO-C-C-C_{\beta} \cdot R \cdot \longrightarrow HO-C-C=C_{\beta}$$

$$R$$

$$\xrightarrow{3(\pi,\pi^{*})} O-C-C-C_{\beta}H \cdot R \cdot \longrightarrow O=C-C-C_{\beta}H$$

Die Ausführung dieser Arbeit wurde ermöglicht durch finanzielle Unterstützung seitens des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und der Firmenich SA., Genf.

Experimenteller Teil

Ohne anderslautende Angaben gilt: Zur Aufarbeitung wurden die Rohgemische in organischen Lösungsmitteln (meist CH₂Cl₂, Benzol oder Äther) aufgenommen, mit H₂O oder wässeriger ges. NaCl-Lösung neutral gewaschen, über Na_2SO_4 oder $MgSO_4$ getrocknet und das Lösungsmittel unter Vakuum im Rotationsverdampfer abgezogen. In der Gas-Chromatographie (GC.) verwendete man He als Trägergas, ca. 2 ml/Min. für Kapillarkolonnen [150'×0,01"; DC-550, QF-1, OV-101] und 70–150 ml/Min. für gepackte Kolonnen [präparativ: $10' \times 3/8''$, semipräp./analytisch: $10' \times 1/4'$; 5% SE-30 oder 5% QF-1 auf Chromosorb G-AW-DMCS, 20% Apiezon Lauf Chromosorb W-NAW]. Die chromatographische Kontrolle auf Einheitlichkeit der Endprodukte erfolgte stets durch Dünnschichtchromatographie [DC.; Merck Kieselgel-Fertigplatten; Nachweis der Flecke durch Fluoreszenzlicht (254 oder > 300 nm) und Anfärben durch Besprühen mit H₂SO₄] und/oder GC. Für die präparative Säulenchromatographie wurde Kieselgel Merck (Korngrösse 0,05-0,2 mm) in Stufensäulen verwendet. Die Sdp. und Smp. sind nicht korrigiert. UV.-Spektren: λ_{\max} in nm und ε -Werte in Klammern angefügt. IR.-Spektren: ohne anderslautende Angabe in CCl₄; ν_{max} in cm⁻¹. NMR.-Spektren: 60 oder 100 MHz; ohne anderslautende Angabe in CCl₄; δ -Werte bezogen auf internes $(CH_3)_4$ Si. Abkürzungen: s (Singulett), d (Dublett), t (Triplett) und q (Quadruplett) für Spektren erster Ordnung, m (Multiplett) für Signalgruppen höherer Ordnung, b (breites, undcutlich strukturiertes Signal), J (Kopplungskonstante in Hz). Die integrierte Protonenzahl für die einzelnen Signale stimmt mit den jeweils angefügten Zuordnungen überein. Massenspektren (MS.): die hursiv geschriebenene Massenzahl entspricht dem Ion grösster Signalintensität.

Herstellung des Enon-acetals 6 (Schema 1). – 1-Åthylendioxy-4-carboäthoxy-4-methyl-cyclohex-2-en (2). Eine Lösung von 1 g 4-Carboäthoxy-4-methyl-cyclohex-2-enon (1) [31], 1 g (CH₂OH)₂ und 10 mg *p*-Toluolsulfonsäure wurde 2 Std. im Wasserabscheider gekocht, dann auf eine ges. wässerige NaHCO₃-Lösung gegossen und mit Benzol extrahiert. Die Destillation des

¹⁶) Eine weitere Möglichkeit einer «chemischen» internal conversion besteht in der Reversibilität der Wasserstoffübertragung in den Biradikal-Zwischenprodukten (z. B. 74), für welche ebenfalls noch kein experimenteller Nachweis erbracht ist.

Rohproduktes lieferte bei 100°/0,1 Torr 1 g **2** (Ausbeute 80%). – IR.: 1035, 1115, 1190, 1654, 1735. – NMR.: 1,28/s, H₃–CC(4); 1,28/t + 4,12/q, J = 7, H₅–C₂O; 3,88/bs, H₄–C₂O₂; 5,46 + 5,81/ AB, J = 10, H–C(2 und 3). – MS.: 222 (M^+), 198, 153, 112.

C₁₂H₁₈O₄ (226,27) Ber. C 63,70 H 8,02% Gef. C 63,54 H 8,17%

1-Åthylendioxy-4-hydroxymethyl-4-methyl-cyclohex-2-en (**3**). 6,1 g **2** in 150 ml abs. Äther wurden unter Argon bei -80° mit 60 ml einer Lösung von 20 Vol.-% (*i*-Bu)₂AlH in Methylcyclohexan versetzt. Nach 30 Min. wurde das überschüssige Reduktionsmittel mit Aceton zerstört, das Gemisch auf eisgekühlten AcONa/AcOH-Puffer gegossen und mit CH₂Cl₂/2N Na₂CO₃-Lösung aufgearbeitet. Man erhielt 5,0 g reines Produkt **3** (Ausbeute 100%). – IR.: 1030, 1100, 1650, ca. 3500 (breit), 3640. – NMR.: 1,00/s, H₃--CC(4); 3,30/bs, H₂--CC(4); 3,90/s, H₄--C₂O₂; 5,50 + 5,60/AB, J = 10, H--C(2 und 3). – MS.: 184 (M⁺), 166, 154, 153, 112.

C₁₀H₁₆O₃ (184,24) Ber. C 65,19 H 8,75% Gef. C 65,19 H 8,85%

4-Hydroxymethyl-4-methyl-cyclohex-2-enon (4). 550 mg 3 wurden 30 Min. bei RT. und unter Rühren mit 200 µl 5N Salzsäure in 10 ml Aceton hydrolysiert. Durch Extraktion mit CH_2Cl_2 wurden 350 mg reines Produkt 4 erhalten (Ausbeute 83%). – IR.: 1050, 1690, ca. 3450 (breit), 3630. – NMR.: 1,18/s, H_3 –CC(4); 3,60/s, H_2 –CC(4); 6,05 + 6,82/AX, J = 10,5, H–C(2 bzw. 3). – MS.: 140 (M^+ ; $C_8H_{12}O_2$), 110, 95, 81.

4-Formyl-4-methyl-cyclohex-2-enon (5). Einer Lösung von 350 mg 4 und 3 g Et₃N in 7,5 ml abs. Me₂SO wurden langsam unter Rühren bei RT. 1,2 g Pyridin-SO₃-Komplex in wenig Me₂SO zugetropft. Nach 2 Std. wurde auf eisgekühlte 2N Salzsäure gegossen und mit Benzol extrahiert. Die Filtration des Rohproduktes durch neutrales Al_2O_3 (Akt. III) lieferte 250 mg 5 (Ausbeute 72%). – IR.: 1618, 1690, 1735, 2700, 2800, 2870. – NMR.: 1,33/s, H₃–CC(4); 6,05 + 6,74/AX, J = 10, H-C(2 bzw. 3); 9,62/s, H--CC(4). - MS.: 138 (M⁺; C₈H₁₀O₂), 110, 109, 95, 87.

4-Dimethoxymethyl-4-methyl-cyclohex-2-enon (6). 150 mg 5 wurden 14 Std. bei RT. mit 20 μ l konz. Salzsäure in 10 ml MeOH behandelt. Die Extraktion mit CH₂Cl₂/H₂O lieferte quantitativ 6. – UV. (EtOH): 224 (9950), ca. 305 (Schulter, ca. 30). – IR.: 1080, 1110, 1685, 2830. – NMR.: 1,12/s, H₃-CC(4); 3,50 + 3,53/2s, zwei H₃-CO; 4,02/s, H-CC(4); 5,83 + 6,69/AX, J = 10.5, H-C(2 und 3). – MS.: 184 (M^+ ; C₁₀H₁₆O₃), 75.

Herstellung der Enon-acetale 8,9 und 9-d₃ (Schema 1). – 3,4-Dimethyl-4-dimethoxymethyl-cyclohex-2-enon (8). 1,0 g 1-Äthylendioxy-3,4-dimethyl-4-formyl-cyclohex-2-en (7) [32] wurde 30 Min. bei RT. und unter Rühren mit 100 µl konz. Salzsäure in 5 ml MeOH behandelt und dann mit CH₂Cl₂/H₂O extrahiert. Durch Chromatographie an Kieselgel (Benzol/Äthylacetat 4:1) und anschliessende präp. GC. (5% SE-30/Chromosorb G) wurden 300 mg 8 (Ausbeute 30%) isoliert. – UV. (EtOH): 240 (13400), 320 (48). – IR.: 1080, 1110, 1620, 1675, 2820. – NMR.: 1,10/s, H₃--CC(4); 1,90/d, J = 1.5, H₃--CC(3); 3,40 + 3,44/2s, zwei H₃--CO; 4,12/s, H--CC(4); 5,61/q, J = 1.5, H--C(2). – MS.: 198 (*M*⁺), 75.

C₁₁H₁₈O₃ (198,26) Ber. C 66,64 H 9,15% Gcf. C 66,58 H 9,14%

3,4-Dimethyl-4-äthylendioxymethyl-cyclohex-2-enon (9). 5,0 g 7 und 0,5 ml Methansulfonsäure wurden in 50 ml abs. Benzol 1 Std. bei RT. gerührt und darauf nach Zugabe eines Überschusses an K_2CO_3 durch neutrales Al_2O_3 (Akt. III) filtriert. Die frakt. Vakuumdestillation lieferte 2,4 g 9 (Ausbeute 48%). – UV. (EtOH): 238 (11750), ca. 300 (68). – IR. (CHCl₃): 1100, 1620, 1665, 2880. – NMR.: 1,16/s, H_3 –CC(4); 1,96/d, J = 1,5, H_3 –CC(3); 3,93/bm, H_4 –C₂O₂; 4,90/s, H–CC(4); 5,79/q, J = 1,5, H–C(2). – MS.: 196 (M^+ ; C₁₁H₁₆O₃), 95, 73.

3-Trideuteriomethyl-4-äthylendioxymethyl-4-methyl-2,6,6-trideuterio-cyclohex-2-enon ($9-d_6$). Eine Lösung von 200 mg 9 und 50 mg NaOH in 9 ml Dioxan und 9 ml D₂O wurde 1 Std. zum Sieden erhitzt, darauf in Äther aufgenommen, die org. Phase 2mal mit D₂O gewaschen, und das Produkt gas-chromatographisch gereinigt. – MS.: 4% d₄, 27% d₅, 69% d₆.

Herstellung der Enon-acetale 12, $12-d_5$ und $12-d_6$ sowie des Dienon-acetals 14 (Schema 2)¹⁷). – 10-Formyl- $\Delta^{1,9}$ -octal-2-on (11). Zu einer Lösung von 26,4 ml Pyridin in 400 ml

¹⁷) Anmerkung der Redaktion: Auf Wunsch der Autoren wurde die von ihnen benutzten und von den IUPAC-Regeln abweichenden Bezeichnungen der angulären Kohlenstoffatome der Decalin- und Hydrindanderivate mit C(9 und 19) [statt 8a und 4a] bzw. C(8 und 9) [statt 7a und 3a] ausnahmsweise belassen.

 CH_2Cl_2 (getrocknet durch Filtration über basisches Al_2O_3 , Akt. I) wurden bei RT. und unter Rühren 16,02 g CrO_3 portionenweise zugegeben. Nach 10 Min. weiteren Rührens tropfte man eine Lösung von 4,0 g 10-Hydroxymethyl- $A^{1,9}$ -octal-2-on (**10**) [33] in wenig CH_2Cl_2 zu. Es wurde 30 Min. weitergerührt, darauf mit 400 ml Äther versetzt, das ausgefallene Pyridinchromat über Celit abfiltriert und Pyridin azeotrop mit Toluol abgedampft. Die Filtration in CH_2Cl_2 durch neutrales Al_2O_3 (Akt. III) ergab 3,1 g **11** (Ausbeute 78%). -- IR.: 1630, 1680, 1730, 2670, 2750, 2790, 2860. -- NMR.: 5,92/bs, H--C(1); 9,63/s, H--CC(10). -- MS.: 178 (M^+ ; $C_{11}H_{14}O_2$), 150, *149*.

10-Dimethoxymethyl- $\Delta^{1,9}$ -octal-2-on (12). Die Acetalisierung von 11 mit HCl/McOH (vgl. 7→8) lieferte nach Chromatographie an Kieselgel (Benzol/Äthylacetat 4:1) die Verbindung 12 (Ausbeute 50%). Smp. 53-55° (krist. aus Hexan). – UV. (EtOH): 244 (12600), 313 (68). – IR.: 1075, 1105, 1626, 1670, 2820. – NMR.: 3,49 + 3,55/2s, zwei H₃--CO; 4,54/s, H--CC(10); 5,78/bs, H--C(1). – MS.: 224 (M^+ ; C₁₃H₂₀O₃), 193, 164, 151, 91, 75.

10-Dimethoxymethyl-1, 3, 3, 8, 8-pentadeuterio- $\Delta^{1,9}$ -octal-2-on (12-d₅). Die Deuterierung von 12 erfolgte mit D₂O/NaOH/Dioxan (vgl. $9 \rightarrow 9$ -d₆). – MS.: 2% d₃, 26% d₄, 72% d₅.

10-Di(trideuteriomethoxy)-methyl- $\Lambda^{1,9}$ -octal-2-on (12-d₆). 500 mg 11 wurden 5 Std. bei RT. mit 25 µl konz. HCl/CD₃OD behandelt, mit CH₂Cl₂/H₂O aufgearbeitet und das Rohprodukt 2 Std. in 20 ml siedender ges. methanolischer K₂CO₃-Lösung gehalten. Das durch Extraktion mit CH₂Cl₂/H₂OH gewonnene Rohprodukt wurde durch präp. GC. und Kristallisation aus Hexan gereinigt und ergab so 247 mg 12-d₆ (Ausbeute 38%). – IR.: zusätzliche Banden bei 2063, 2110, 2130, 2205, 2243. – MS.: 196 [M^+ (C₁₃H₁₄D₆O₃)–CD₃Oj, 167, 91, 87.

10-Formyl- $\Lambda^{1,9}$; ⁷-hexal-2-on (13). Eine Lösung von 1,9 g 11 und 3,64 g Chloranil in t-Butylalkohol wurde 4,5 Std. zum Sieden erhitzt, dann eingedampft und der Rückstand in CH_2Cl_2 durch neutrales Al_2O_3 (Akt. III) filtriert. Die Chromatographie des Rohproduktes (1,3 g) an Kieselgel (Benzol/Äthylacetat 4:1) lieferte 631 mg eines Präparates, das sich nach NMR. aus 13 [5,90/s, H-C(1); 6,37/s, H-C(7 und 8); 9,71/s, H-CC(10)] und einer nicht identifizierten zweiten Komponente [3,64/bs; 5,78/s] zusammensetzte. Aufgrund der Verarbeitung zu 14 enthielt dieses Gemisch > 80% 13. – UV. (EtOH) einer gas-chromatographisch (SE-30) gereinigten Probe: 278 (16500).

10-Dimethoxymethyl-/l^{1,9;7}-hexal-2-on (14). 630 mg 13 (siehe oben betr. Zusammensetzung des Präparates) wurden mit HCl/MeOH (vgl. $7 \rightarrow 8$) acetalisiert. Die Chromatographie an Kieselgel (Benzol/Äthylacetat 4:1) ergab 640 mg 14 (Ausbeute 81%). Smp. 72-74° (krist. aus Aceton/Hexan). – UV. (EtOH): 280 (26900). – IR.: 1075, 1103, 1595, 1625, 1655. – NMR.: 3,39 + 3,50/2s, zwei H₃-CO; 4,32/s, H-CC(10); 5,80/s, H-C(1); 6,20/s, H-C(7 und 8). – MS.: 222 (M⁺; C₁₃H₁₈O₃), 75.

Herstellung der Enon-acetale 20a, b und 20($-d_6$)a sowie des Dienon-acetals 22 (Schema 2)¹⁷). – Gemisch der 2-Carbäthoxy-cis/trans-2, 6-dimethyl-6 (3-chlor-but-2-enyl)-cyclohexanone (16a, b). 30,5 g 2-Carbäthoxy-2, 6-dimethyl-cyclohexanon (15) [34] wurde langsam bei RT. und unter Rühren zu einer Lösung von 5 g ölfreiem NaH und 20 g KJ in 750 ml abs. HCONMe₂ getropft. Nach 6 Std. wurden 30 g 1, 3-Dichlor-but-2-en zugegeben, das Ganze 15 Std. weitergerührt, dann auf eine eisgekühlte ges. NH₄Cl-Lösung gegossen und mit Benzol/H₂O aufgearbeitet. Eine frakt. Destillation lieferte bei 105–115°/0,1 Torr 23 g 16a, b (Ausbeute 53%). – IR.: 1662, 1705, 1733. – NMR.: 1,00 + 1,03 (3H) + 1,22/3s, H₃–CC(2 und 6); 1,22/t, $J = 7 + ca. 4,1/m, H_5-C_2O; 2,1/bs, H_3-C (butenyl); 5,3/bt, <math>J = 6 + 5,5/bt, J = 8, H-C$ (butenyl). – MS.: 284/286 (M^+ ; $C_{15}H_{23}O_3$ Cl). 249, 239/241, 238/240, 210/212, 203, 196, 167, 173, 85.

Diastereomere Diketo-ester **17a** und **17b**. 100 ml eisgekühlte konz. H_2SO_4 wurde langsam zu einer Lösung von 23 g **16a**, **b** in 25 ml AcOH getropft, das Gemisch nach 2 Std. (Ende der HCl-Entwicklung) unter Rühren auf H_2O/E is gegossen und mit $CH_2Cl_2/2 \times Na_2CO_3$ -Lösung aufgearbeitet. Man erhielt 20,8 g eines Gemisches von **17a**, **b** (Ausbeute *ca*. 95%), das direkt verarbeitet wurde. Zur Analyse wurden die Diastercomeren gas-chromatographisch (QF-1) aufgetrennt:

2-Carbäthoxy-cis-2, 6-dimethyl-6(3-oxo-butyl)-cyclohexanon (**17a**). – IR.: 1145, 1160, 1180, 1240, 1705, 1720, 1735. – NMR.: 1,02 + 1,21 + 2,08/3s, H_3 –CC(6, 2 bzw. butyl); 1,23/t, J = 7,5 + 4,08 und 4,16/2 ABX_3 , J nicht exakt bestimmbar, H_5 –C₂O. – MS.: 268 (M^+ ; C₁₅H₂₄O₄), 222, 198, 194, 184, 179, 151, 125, 115, 87.

2-Carbäthoxy-trans-2,6-dimethyl-6 (3-oxo-butyl)-cyclohexanon (17b). – IR.: 1160, 1240, 1705, 1720, 1735. – NMR.: 0,97 + 1,22 + 2,05/3s, H₃–CC(6, 2 bzw. butyl); 1,24/t, J = 7 + 3,97 und 4,17/2ABX₃, J = 7 und 10,5, H₅–C₂O. – MS.: deckungsgleich mit MS. von 17a.

cis-8,10-(**18a**) und trans-8,10-Dimethyl-8-carbäthoxy- $\Delta^{1,9}$ -octal-2-on (**18b**). Eine Lösung von 20,8 g **17a**, **b** und 44,5 g Pyrrolidin in 150 ml Benzol wurde über Nacht im Wasserabscheider unter Argon gekocht, dann im Vakuum eingedampft, erneut in 150 ml Benzol aufgenommen und die Lösung nach Zugabe von 9,5 g AcONa, 20 ml AcOH und 20 ml H₂O 4 Std. zum Sieden erhitzt. Nach der Aufarbeitung mit 2N Salzsäure/2N Na₂CO₃/H₂O wurde das Rohprodukt durch Chromatographie an Kieselgel (Äther/Hexan 2:1) in die folgenden Fraktionen aufgetrennt (Gesamtausbeute 40%):

1. 2,08 **18b**. – UV. (Isooctan): 232 (10900), 340 (*ca.* 34). – IR.: 1155, 1245, 1607, 1675, 1730. – NMR.: 1,10 + 1,32/2*s*, H₃–CC(10 bzw. 8); 1,21/*t*, $J = 7 + 4,08/ABX_3$, J = 7, H₅–C₂O; 5,91/*s*, H–C(1). – MS.: 250 (M^+ ; C₁₅H₂₂O₃), 235, 222, 204, 194, 177, 163, 149, *136*, 122, 107, 105, 93, 91.

2. 2,10 g Gemisch 18a, b.

3. 3,58 g **18a**. – IR. und MS. wie **18b**. – NMR.: 1,26/t + 4,16/q, J = 7, H₅–C₂O; 1,32 + 1,41/2s, H₃–CC(8 und 10); 5,50/s, H–C(1).

cis-8,10- (19a) und trans-8,10-Dimethyl-8-formyl- $\Delta^{1,9}$ -octal-2-on (19b). 60 ml einer Lösung von 20% (*i*-Bu)₂AlH in Hexan wurden bei 0° unter Argon und Rühren zu 3,59 g 18a in 350 ml abs. Äther getropft, das überschüssige Reduktionsmittel nach kurzem Weiterrühren mit 60 ml Aceton zerstört und das Gemisch auf eine eisgekühlte, eine kleine Menge AcOH enthaltende NH₄Cl-Lösung gegossen. Die Aufarbeitung mit CH₂Cl₂/2N Na₂CO₃/H₂O ergab 3,65 g rohes cis-8,10-Dimethyl-8-hydroxymethyl- $\Delta^{1,9}$ -octal-2 ξ -ol, das in wenig CH₂Cl₂ gelöst unter Rühren bei RT. einem Gemisch von 400 ml CH₂Cl₂ (über neutrales Al₂O₃, Akt. 1, filtriert), 25 ml Pyridin und 15 g CrO₃ zugefügt wurde. Nach 30 Min. wurde das überschüssige Pyridinchromat durch Zugabe von 11 Äther ausgefällt und über Colit abfiltriert und das Filtrat im Vakuum eingedampft. Das restliche Pyridin wurde durch azeotrope Destillation mit Toluol entfernt. Die Filtration des Rückstandes in CH₂Cl₂ durch neutrales Al₂O₃ (Akt. III) lieferte 2,35 g 19a (Ausbeute 78%). – UV. (Isooctan): 228 (21000). – IR.: 1600, 1680 (breit), 1730 (scharf), 2700. – NMR.: 1,10 + 1,15/2 s, H₃-CC(8 und 10); 5,90/s, H-C(1); 9,17/s, H-CC(8). – MS.: 206 (M^+ ; C₁₃H₁₈O₂), 178, 177, 163, 159, 149, 135, 121, 107, 105, 91.

Das Diastereomere **19b** wurde auf analoge Weise aus **18b** hergestellt. – IR. und MS. wie **19a**. – NMR. (CCl₄): 1,33 + 1,38/2s, H₃--CC(8 und 10); 5,38/s, H--C(1); 9,34/d, J = 2, H--CC(8). Die Kopplung des Aldehydprotons erfolgt mit einem Ring-Methylenproton (vermutlich dem zur Formylgruppe *trans*-ständigen C(7)-Proton) laut Doppelresonanz-Entkopplungsexperiment (in CCl₄ + C₆D₆): 8,91/s bei Einstrahlung bei 1,26/b*m*.

cis-8,10- (**20 a**) und trans-8,10-Dimethyl-8-dimethoxymethyl- $\Delta^{1,9}$ -octal-2-on (**20 b**). Die Acetalisierung von **19a** (1 g in 20 ml McOH und 100 µl konz. bei RT.) wurde dünnschichtchromatographisch (Benzol/Äthylacetat 4:1) überwacht und nach 6 Std. durch Aufarbeitung mit CH₂Cl₂/2 N Na₂CO₃/H₂O abgebrochen. Die Chromatographie an Kieselgel Äther/Hexan 2:1) ergab 618 mg **20 a** (Ausbeute 50%). – UV. (Hexan): 230 (12600), 334 (37). – IR.: 1080, 1110, 1595, 1665. – NMR.: 1,18 + 1,32/2s, H₃-CC(8 und 10); 3,47 + 3,54/2s, zwei H₃-CO; 4,18/s, H--CC(8); 5,97/s, H--C(1). – MS.: 252 (M⁺; C₁₅H₂₄O₃), 221, 220, 205, 192, 177, 91, 75.

Die Herstellung von **20 b** erfolgte auf gleiche Weise aus **19 b**. – UV. (Isooctan): 232 (8500), ca. 300–390 (nicht abgetrennte $n \rightarrow \pi^*$ -Bande). – IR.: 1080, 1105, 1600, 1670. – NMR.: 1,09 + 1,29/2s, H₃–CC(8 und 10); 3,41 + 3,52/2s, zwei H₃–CO; 4,33/s, H–CC(8); 5,98/s, H–C(1). – MS. wie bei **20 a**.

cis-8,10-Dimethyl-8-di(trideuteriomethoxy-)methyl- $\Delta^{1,9}$ -octal-2-on [20(-d₆)a]. Die Acetalisierung von 19a zu 20(-d₆)a wurde nach der Vorschrift für 11 \rightarrow 12-d₆ ausgeführt. Zur Reinigung wurde an Kieselgel (Äther/Hexan 2:1) chromatographiert. – NMR.: wie von 20a, aber ohne Methoxylsignale. – MS.: 258 (M^+ ; C₁₅H₁₈D₆O₃), 81.

cis-8,10-Dimethyl-8-formyl- $\Delta^{1,9}$; 3-hexal-2-on (21). Eine Lösung von 1,8 g 19a und 2,9 g 2,3-Dichlor-5,6-dicyano-p-benzochinon in 50 ml abs. Dioxan wurde 21 Std. zum Sieden erhitzt, die abgekühlte Lösung vom ausgefallenen Hydrochinon abfiltriert und eingedampft. Der Rückstand wurde in Benzol durch neutrales Al₂O₃ (Akt. III) filtriert und darauf an Kieselgel mit Äther/Hexan 2:1 chromatographiert: 350 mg 21 (Ausbeute 20%). Das Präparat war bei tiefer Temp. kristallin, schmolz aber unter RT. – IR.: 1600, 1634, 1675, 1738, 2715. – NMR.: 1,37 + 1,40/2s, H₈-CC(8 und 10); 5,63/d, $J_{1,3} = 2$, H--C(1); 5,97/d×d, $J_{1,3} = 2$, $J_{3,4} = 9,5$, H--C(3); 6,55/d, $J_{3,4} = 9,5$, H--C(4); 9,20/s, H--CC(8). – MS.: 204 (M^+ ; C₁₃H₁₆O₂), 176, 175, 161, 147.

cis-8,10-Dimethyl-8-dimethoxymethyl- $\Delta^{1,9;3}$ -hexal-2-on (22). Die Acetalisierung von 280 mg 21 mit HCl/MeOH (vgl. $5 \rightarrow 6$) lieferte nach der Chromatographie an Kieselgel mit Benzol/Äthylacetat 4:1 220 mg 22 (Ausbeute 56%). – UV. (Isooctan): 240 (12500). – IR.: 1660, 1625, 1595, 1105, 1075. – NMR.: 1,21 + 1,32/2s, H₃-CC(8 und 10); 3,45 + 3,47/2s, H₃-CO; 4,06/s, H-CC(8); 5,98/d×d, $J_{1,3} = 2$, $J_{3,4} = 9,5$, H-C(3); 6,04/d, $J_{1,3} = 2$, H-C(1); 6,48/d, $J_{3,4} = 9,5$, H-C(4). – MS.: 219 [$M^+(C_{15}H_{22}O_3)$ -MeO·], 218, 175, 75.

Herstellung des Hexahydrophenanthron-10a-formyl-acetals 26 (Schema 3). – 10a-Hydroxymethyl-1, 2, 3, 9, 10, 10a-hexahydrophenanthr-3 ξ -ol (24). 3,0 g 10a-Carbomethoxy-1, 2, 3, 9, 10, 10a-hexahydrophenanthr-3-on (23) [35] wurden mit (*i*-Bu)₂AlH nach der Vorschrift für 18a \rightarrow 19a reduziert, wobei 2,6 g rohes 24 (Ausbeute ca. 95%) resultierten, das direkt weiter verarbeitet wurde. Smp. 175–176°. – IR. (CHCl₃): ca. 3400 (breit), 3590. – NMR. (Aceton-d₆/D₂O): 3,36 + 3,50/AB, f = 12, H₂–CC(10a); ca. 4,3/b, H–C(3); 6,19/d, $f_{3,4} = 1,5$, H–C(4); ca. 7,1 (3H) + ca. 7,5 (1H)/2m, arom. H. – MS.: 230 (M⁺; C₁₅H₁₈O₂), 212, 191, 184, 182, 787.

10a-Formyl-1, 2, 3, 9, 10, 10a-hexahydrophenanthr-3-on (25). 1,8 g 24 wurden in wenig Aceton gelöst und mit Pyridinchromat (vgl. $10 \rightarrow 11$) zu 836 mg 25 oxydiert (Ausbeute 47%). – IR.: 1490, 1594, 1612, 1677, 1736, mehrere Banden um 2700. – NMR. (CDCl₃): 6,81/s, H—C(4); ca. 7,1–7,6 (3H) + ca. 7,7–8,0 (1H)/2m, arom. H; 9,68/s, H—CC(10a). – MS.: 226 (M⁺; C₁₅H₁₄O₂), 198, 197, 196.

10 a-Dimethoxymethyl-1, 2, 3, 9, 10, 10 a-hexahydrophenanthr-3-on (26). Die Acetalisierung von 836 mg 25 nach der Vorschrift für $7 \rightarrow 8$ lieferte nach der Chromatographie an Kieselgel (Benzol/Äthylacetat 4:1) 335 mg 26 (Ausbeute 33%). Smp.: 127-129° (krist. aus Aceton/Hexan). – UV. (Hexan): 278 (20230). – IR. (CHCl₃): 1075, 1096, 1115, 1592, 1610, 1650. – NMR. (CDCl₃): 3, 0 + 3,49/2s, zwei H₃-CO; 4,35/s, H-CC(10a); 6,67/s, H-C(4); ca. 7,2-7,6 (3H) + ca. 7,7-8,0 (1H)/2m, arom. H. – MS.: 272 (C₁₇H₂₀O₃), 241, 212, 199, 167, 141.

UV.-Bestrahlungen. – Versuchsanordnungen. Lichtquellen für 254 nm: Hg-Niederdruckbrenner (Quarzlampen GmbH., Hanau) in wassergekühltem Quarztauchrohr für präparative Versuche; Hg-Niederdruck-Ringbrenner (Minerallight PCQX1, Ultraviolet Products Inc.) mit, bei ausreichendem Volumen magnetisch gerührten, Probelösungen in zentral angeordneten Quarzröhrchen. Wellenlängenbereich > 313 nm und > 340 nm: 250W-Hg-Hochdruckbrenner (Philips) in einem wassergekühlten Pyrextauchrohr, das mit einem zusätzlichen äusseren Mantel von ca. 1 cm Schichtdicke zur Aufnahme einer der folgenden Filterlösungen diente: für > 313 nm, wässerige 0,05proz. KH-Phthalatlösung [opt. Dichte: 1,5 (295 nm), 0,6 (300), 0,05 (310)]; für > 340 nm, 750 g NaBr + 7 g Pb(NO₃)₂ pro l H₂O [opt. Dichte: 1,5 (340 nm), 0,6 (345), 0,03 (360)]. Die Lösungen wurden nicht entlüftet, da Vorversuche mit entgasten Proben keine merkliche Änderung der photochemischen Resultate zeigten.

4-Dimethoxymethyl-4-methyl-cyclohex-2-enon (6). 0,0815 M 6 in Isooctan oder McOH + 254 nm (analytische Versuche) ergab Gemische von 27 und 28 (Mengenverhältnisse siehe in der Tabelle). Die Gesamtausbeuten betrugen jeweils ca. 30%, doch ist dabei zu beachten, dass speziell 6 und 27 im GC. leicht zersetzlich sind. 2-Dimethoxymethyl-4-methyl-cyclohex-3-enon (27). – IR. (CCl₄): 1079, 1118, 1620, 1720. – NMR. (CCl₄): 1,80/s mit Feinkopplung, H_3 -CC(4): 2,37/bs, H_2 -C(5 und 6); ca. 2,9/d × d, $J_{2,3} \approx J_{2,H-CC(2)} = 4,5$, H-C(2); 3,30 + 3,33/2s, H_3 -C(0): 4,43/d, $J_{2,H-CC(2)} = 4,5$, H-CC(2); 5,46/bd, $J_{2,3} = 4,5$, H-C(3); Doppelresonanz durch Einstrahlung bei 2,9 entkoppelte die Signale bei 4,43 (\rightarrow s) und 5,46 (\rightarrow bs). – MS.: 152 [M^+ (C₁₀H₁₆O₃-CH₃OH)], 75. I_2 -Methoxy-8-methyl-9 ξ -hydrindan-5-on (28). – NMR. (CCl₄): 1,25/s, H_3 -CC(8); 1,5-2,7/m, H_2 -C(4, 6 und 7); 3,35/s, H_3 -CO; 3,88 + 4,19/A BM, $J_{3,3} = 18,5, J_{A,9} = 7, J_{B,9} = 8, H_2$ -C(3); 5,46/s, 1H--C(1); Doppelresonanz durch Einstrahlung bei 2,5 [H--C(9)] entkoppelte die Signale bei 3,88 und 4,19 (\rightarrow AB).

3,4-Dimethyl-4-dimethoxymethyl-cyclohex-2-enon (8). a) 200 mg 8 in 40 ml Hexan lieferten mit 254 nm nach vollständigem Umsatz (GC.: Apiczon L) nebst kleinen Mengen an 32 und 33 (siehe Bestrahlung von 9) ca. 4% 29 (siehe b), ca. 6% 30 und 45% eines Gemisches von zwei Stereo-isomeren von 31, das im GC. an QF-1 aufgetrennt werden konnte. 2-Dimethoxymethyl-3,4-dimethyl-cyclohex-3-enon (30). – IR. (CCl₄): 1080, 1108, 1723. – NMR. (CCl₄): 1,67/s, H₃–CC(3 und 4); 2,0–2,6/m, H₂–C(5 und 6); 2,78/bd, $J_{2, H-CC(2)} = 5,2$, H–C(2); 3,52 + 3,26/2s, H₃–CO; 4,45/d, $J_{2, H-CC(2)} = 5,2$, H–C(2); Doppelresonanz durch Einstrahlung bei 2,78 entkoppelte das Signal

bei 4,45 (\rightarrow s). - MS.: 198 (M^+ , C₁₁H₁₈O₃), 167, 138, 125, 123, 75. 1§-Methoxy-8,9§-dimethyl-2oxa-hydrindan-5-one **31**. - (7): IR. (CCl₄): 1030, 1038, 1098, 1722. - NMR. (CCl₄): 1,08/s, H₃--CC(8 und 9); 1,6-2,6/m, H₂--C(4, 6 und 7); 3,35/s, H₃--CO; 3,65/bs, H₂--C(3); 4,56/s, H--C(1). -(2): IR. (CCl₄): 1030, 1100, 1720. - NMR. (CCl₄): 0,96 + 1,05/2s, H₃--CC(8 und 9); 1,2-3,0/m, H₂--C(4, 6 und 7); 3,36/s, H₃--CO; 3,61/bs, H₂--C(3); 4,58/s, H--C(1). - MS. des Gemisches 7 + 2: 198 (M^+ , C₁₁H₁₈O₃), 167, 153, 138, 123, 109, 96.

b) $0,05 \le 8$ in Benzol + 254 nm (semipräparativer Versuch unter Sensibilisierungsbedingungen) ergab praktisch ausschliesslich 3-Methylen-4-dimethoxymethyl-4-methyl-cyclohexanon (29). – NMR. (CCl₄): 1,13/s, H₃–CC(4); 1,6–2,6/m, H₂–C(5 und 6); 2,90 + 3,21/AB mit Feinkopplung, $J_{gem} =$ 8, H₂–C(2); 3,45 + 3,48/2s, zwei H₃–CO; 4,07/s, H–CC(4); 4,82/s mit Feinkopplung, H₂–CC(3). Das Produkt isomerisierte sich bei der Isolierung im GC. (Apiezon L) teilweise und beim Stehen in CCl₄ bei RT. innert Tagen vollständig zu 8.

c) $0,1 \le 8$ in Hexan $+ \ge 313$ nm (analytischer Versuch) lieferte praktisch ausschliesslich **29** [keine Bildung von **30–33** nach GC. (Apiezon L)].

Bestrahlung von 3,4-Dimethyl-4-äthylendioxymethyl-cyclohex-2-enon (9) (Schema 4). 100 mg 9 in 10 ml 2-Methyltetrahydrofuran lieferten mit 254 nm nach präp. GC. (SE-30) 20 mg eines Gemisches von 32 + 33 sowie 17 mg 34. 3,4-Dimethyl-cyclohex-2-enon (32). – UV. (EtOH): 235 (11100), 309 (35). – IR. (CHCl₃): 1634, 1667. – NMR (CCl₄): 1,22/d, J = 7, H₃–CC(4); 1,96/s, H₃–CC(3); 5,69/bs, H–C(2). – MS.: 124 (M⁺), 96, 95, 82, 81, 68, 67.

C₈H₁₂O (124,18) Ber. C 77,37 H 9,74% Gef. C 77,20 H 9,38%

3,4-Dimethyl-cyclohex-3-enon (**33**). – UV. (EtOH): 279 (63). – IR. (CCl₄): 1725. – NMR. (CCl₄): 1,71/s mit Feinkopplungen, H₃–-CC(3 und 4); 2,40/s, H₂–-C(5 und 6); 2,70/s mit Feinkopplung, H₂–-C(2). – MS.: 124 (M⁺), 82, 81, 67.

 $C_8H_{12}O$ (124,18) Ber. C 77,37 H 9,74% Gef. C 77,40 H 9,85%

2-Äthylendioxymethyl-3, 4-dimethyl-cyclohex-3-enon (**34**). – IR. (CCl₄): 1110, 1125, 1140, 1720. – NMR. (CCl₄): 1,76/2s, H₃–CC(3 und 4); 1,9–2,7/m, H₂–C(5 und 6); 2,81/bd, J = 3,5, H–C(2); 3,7–4,1/m, (H₂–C)₂O₂; 5,04/d, J = 3,5, H–CC(2). – MS.: 196 (M^+ ; C₁₁H₁₆O₃), 152, 137, 124, 109, 73.

Bestrahlung des Gemisches 8 + 9-d₆ (Schema 5). Eine Lösung von je 0,1 M 8 und 9-d₆ in 2-Methyltetrahydrofuran wurde mit 254 nm bestrahlt. Die $\gamma \rightarrow \alpha$ -Umlagerungsprodukte wurden durch GC. (Apiezon L) isoliert und massenspektroskopisch untersucht: ausschliesslich 30 und 34-d₆ (kein 30-d₆ und 34).

Bestrahlung der 10-Dimethoxymethyl- $\Delta^{1,9}$ -octal-2-one 12, 12- d_5 und 12- d_6 (Schema 6)¹⁷).-a) 0,067 M 12 in Benzol + > 340 nm lieferte praktisch quantitativ 10-Dimethoxymethyl- $\Delta^{8,9}$ -octal-2-on (35). [GC.-Analyse in Kapillarkolonne (QF-1); Isolierung an SE-30]. - NMR. (CCl₄): 3,50 + 3,53/2s, H₃-CO; 4,35/s, H-CC(10); ca. 5,55/b, H-C(8). Die Verbindung isomerisierte sich bei der Behandlung mit methanolischer K₂CO₃-Lösung bei RT. oder beim Stehen in CCl₄ während einer Woche bei RT. vollständig zu 12. Das gleiche Resultat wurde auch bei der > 340 nm-Bestrahlung in Isooctan und CH₃CN erzielt.

b) Versuche mit 0,067 m **12** in MeOH, *t*-BuOH und *t*-BuOH + Acetophenon (Triplettsensibilisierung) ergaben mit > 340 nm stets dasselbe komplexe Gemisch (kleine Umsätze bei sehr langen Bestrahlungszeiten), in welchem durch GC.-Ko-Injektion *1-Dimethoxymethyl-tricyclo*[4.4.0.0^{2,6}]decan-3-on (**36**) als einziges bekanntes Produkt nachweisbar war [alle GC. an Kapillarkolonne (QF-1)].

c) 0,067 M 12 in MeOH wurde solange mit 254 nm bestrahlt, bis sich die Verbindung 39 eben zu bilden begann (*ca.* 10% Umsatz). Durch Chromatographie an Kieselgel mit Benzol/Äthylacetat 4:1 konnte *1-Dimethoxymethyl-d*^{9,10}-octal-2-on (37) isoliert werden. – IR. (CCl₄): 1058, 1037, 1080, 1103, 1110, 1720, 2830. – NMR. (CCl₄): 2,88/bd, J = 5, H–C(1); 3,38/s, zwei H₃–CO; 4,58/d, J = 5, H–CC(1); Doppelresonanz durch Einstrahlung bei 2,88 entkoppelte das Signal bei 4,58 (\rightarrow s).

d) 300 mg **12** in 200 ml MeOH wurden unter Argon mit 254 nm bis zum vollständigen Umsatz bestrahlt und durch Chromatographie des Rohprodukts an Kieselgel mit Benzol/Äthylacetat 89 mg (Ausbeute 30%) exo-10-Dimethoxymethyl-tricyclo[4.3.1.0]decan-7-on (**39**)¹⁸) isoliert. – IR.

¹⁸) Die exo- und endo-Bezeichnungen beziehen sich auf die Anordnung des Wasserstoffatoms bzw. des Substituenten zum grösseren Ring des überbrückten Systems.

(CCl₄): 1060, 1120, 1140, 1723. – NMR. (C₆D₆): 1,55 + 4,31/*AX*, *J* = 7, H−C(10) bzw. H−CC(10); 3,15 + 3,20/2*s*, H₃−CO; Doppelresonanz durch Einstrahlung bei 4,31 entkoppelte das Signal bei 1,55 (→ *s*). – MS.: 224 (*M*⁺; C₁₃H₂₀O₃), 193, 151, 91, 75.

c) 5,0 g **12** wurden in einem Zweiphasensystem bestehend aus 200 ml Hexan und 10 ml wässeriger, 20% Natriumdithionit enthaltender 5proz. NaOH-Lösung mit 254 nm unter starkem Rühren bis zum vollständigen Umsatz bestrahlt (**35** wurde dabei kontinuierlich zu **12** zurückisomerisiert, während **39** unter diesen Reaktionsbedingungen zunehmend zersetzt wurde). Die organische Phase wurde mit H₂O neutralgewaschen und das Photoprodukt mit Benzol/Äthylacetat 4:1 an Kieselgel chromatographiert. Man erhielt 2,0 g (Ausbeute 40%) *13§-Methoxy-12-oxa-tricyclo*[*4.4.3.0*]*tride-can-3-on* (**38**). – IR. (CCl₄): 1031, 1048, 1092, 1121, 1717. – NMR. (CCl₄): 3,36/s, H₃–CO; 3,54 + 3,88/AB, J = 9, H₂–C(11); 4,56/s, H–C(13). – NMR. (C₆D₆): *ca.* 2,55–2,9/m, H–C(*exo-2* und *exo-4*)¹⁸). – MS.: 224 (M⁺; C₁₃H₂₀O₃), 193, 164, 149, 122, 79.

Die basisch katalysierte Deuterierung von **38** (vgl. $9 \rightarrow 9\text{-}d_6$) lieferte ein maximal vierfach deuteriertes Produkt. MS. (gemessen an m/e = 164): 5% d_1 , 16% d_2 , 39% d_3 , 40% d_4 .

f) 0,033 m **12-d**₅ in Isooctan und in *t*-BuOH + 254 nm und GC.-Isolierung (SE-30) ergab in beiden Fällen *135-Methoxy*-endo-2, 4, 4, 10, 10-pentadeuterio-12-oxa-tricyclo[4.4.3.0]tridecan-3-on (**38-d**₅)¹⁸) und exo-10-Dimethoxymethyl-5, 5, 8, 8, 10-pentadeuterio-tricyclo[4.3.1.0]decan-7-on (**39-d**₅)¹⁸) [IR. (CCl₄): 1720, 2100-2240 (diverse Banden). - NMR. (C₆D₆): 3, 15 + 3, 20/2 s, H₃-CO; 4, 31/s, H-CC(10). - MS.: 229 (M⁺; C₁₃H₁₅D₅O₃), 198, 154, 75] von jeweils unverändertem Deuterierungs-grad (MS.: 2% d₃, 26% d₄, 72% d₅).

g) $0,033 \le 12$ -d₆ in Isooctan und in t-BuOH + 254 nm: Isolierung von 13ξ -Trideuteriomethoxyexo-2, 11, 11-trideuterio-12-oxa-tricyclo[4.4.3.0]tridecan-3-on (**38**-d₆)¹⁸) mittels GC. (SE-30) aus Isooctan und mittels Chromatographie an Kieselgel (Benzol/Äthylacetat 4:1) im t-BuOH-Versuch. – NMR. von beiden Proben identisch (C₆D₆): keine Signale der Methoxyl- sowie C(endo-4)- und C(11)-Methylenprotonen; 2,71/ABMX, $f_{exo,endo} = 14$, $J_{exo,4} = 8$ und 10, H—C(exo-4)¹⁸).

h) $0.0165 \le 12 + 0.0165 \le 12 - d_6$ in Isooctan + 254 nm: nach einem Umsatz von ca. 10% wurde das Gemisch **38** + **38**-d_6 durch GC. (SE-30) aufgetrennt. Nach MS. lag eine Zusammensetzung von **38/38**-d_6 = 2,7 (*H*/*D*-Isotopeneffekt) vor.

Triplett-sensibilisierte Bestrahlung von 1-Dimethoxymethyl- $\Delta^{9,10}$ -octal-2-on (**37**) (Schema 6)¹⁷). 0,05 \times **37** in Aceton + 254 nm ergab **39** als einziges Produkt (analytischer Versuch; Produktnachweis mit GC. und DC.).

Bestrahlung von 10-Dimethoxymethyl- $\Delta^{1,9;7}$ -hexal-2-on (14) (Schema 8)¹⁷). 0,067 M 14 in Isooctan + 254 nm lieferte nebst amorphem, schwerlöslichem Material ca. 25% $J3\xi$ -Methoxy-12-oxatricyclo[4.4.3.0]tridec-9-en-3-on (42), das mittels GC. (QF-1) gesammelt wurde. – IR. (CCl₄): 1021, 1037, 1087, 1112, 1717, 3027. – NMR. (CCl₄): 3,38/s, H₃–CO; 3,68 + 3,73/AB, J = 8,2, H₂–C(13); 4,58/s, H–C(11); 5,43 ($J_{8,10} = 2$, $J_{9,10} = 10$) + 5,71 ($J_{8,9} = 3,5$, $J_{9,10} = 10$)/AXY, H–C(10 bzw. 9). – MS.: 222 (M^+ ; C₁₃H₁₈O₃), 192, 162, 118, 91.

Bestrahlung der 8,10-Dimethyl-8-dimethoxymethyl- $\Delta^{1,9}$ -octal-2-one **20a**, **20**(-d₆)**a** und **20b** (Schema 7)¹⁷). a) Die Verbindungen **20a** und **20b** blieben in Isooctan (0,08 M) mit > 340 nm unverändert. Eine Lösung von 0,08 M **20a** + 0,24 M 1,3-Cyclohexadien in Isooctan lieferte mit > 340 nm Dien-Dimere [6], die durch GC. (SE-30) isoliert wurden. - MS.: 160 (M^+ ; C₁₂H₁₆), 106, 91, 80, 79.

b) 0,06M **20a** in Isooctan + 254 nm ergab nach vollständigem Umsatz und Chromatographie an Kieselgel mit Äther/Hexan 2:1 **40a** und **41a** im Verhältnis *ca.* 3:2 und einer Gesamtausbeute von 77% [nach GC. (SE-30) enthielt die bestrahlte Lösung keine weiteren Produkte]. cis-8,70-Dimethyl-cis-8,9-(1' β -methoxy-2'-oxapropano)-decal-2-on (**40a**); Smp. 126–127° (krist. aus Äther/Hexan). - 1R. (CHCl₃): 981, 993, 1046, 1095, 1698, 1700. - NMR. (CDCl₃): 1,05 + 1,26/2s, H₃—CC(8 und 10); 2,50 (J = 3, 17) + 3,02 (J = 1, 17)/2d × d, H₂—C(1)¹⁹); 3,31/s, H₃—CC; 3,56 (J = 1, 9) + 4,15 (J = 3, 9)/2d × d, H₂—C(3')¹⁹); 4,28/s, H--C(1'). - MS.: 252 (M⁺; C₁₅H₂₄O₃), 251, 221, 192, 177, 136. cis-8,70-Dimethyl-cis-8,9-(1' α -methoxy-2'-oxa-propano)-decal-2-on (**41a**); Smp. 162–163° (krist. aus Äther/Hexan). - 1R. (CHCl₃): 1002, 1043, 1110, 1700. - NMR. (CDCl₃): 1,04 + 1,26/2s, H₃—CC(8 und 10); 3,39 (J = 1,2, 8,5) + 4,24 (J = 3, 8,5)/2d × d, H₂—C(3'); 3,44/s, H₃—CC; 4,64/s, H-C(1'). - MS.: 252 (M⁺; C₁₅H₂₄O₃), 251, 221, 192, 177, 136.

¹⁹) Zur Zuordnung dieser Signale siehe theoret. Teil.

c) $0,06 \le 20(-d_6) a$ in Isooctan und in t-BuOH + 254 nm: cis-8,10-Dimethyl-cis-8,9-(1' β -trideuteriomethoxy-2'-oxa-propano)-1 α ,3',3'-trideuterio-decal-2-on [$40(-d_6) a$] wurde durch Chromatographie in Äther/Hexan 2:1 isoliert. – NMR. von beiden Proben identisch (CDCl₃): 1,05 + 1,26/2s, H₃--CC(8 und 10); 2,48/d, J = 1, H--C(1 β); keine Signale der Methoxyl- sowie C(1 α)- und C(3')-Methylenprotonen.

d) $0,06 \le 20 a + 0,06 \le 20(-d_6) a$ in Isooctan + 254 nm: nach einem Umsatz von 10% wurde das Gemisch $40/41a + 40/41(-d_6) a$ durch GC. (SE-30) aufgetrennt. Mittels MS. wurde ein H/D-Isotopeneffekt von 1,7 bestimmt.

e) Quantenausbeutebestimmung (vgl. Fig. 2). Lösungen von $1,7 \cdot 10^{-4}$ M und $4 \cdot 10^{-2}$ M 20 a wurden in einem elektronisch integrierenden Aktinometer [36] bei 238, 245, 254, 265, 313 und 366 nm bestrahlt. Die absorbierte Quantenzahl wurde für jede Wellenlänge bei *ca*. 5, 10 und 15% Umsatz (für 238–254 nm) gemessen und gemittelt (keine signifikante, umsatzabhängige Abweichungen). Der Umsatz wurde anhand der Intensitätsabnahme des UV.-Maximums von 20a bei 230 nm bestimmt. $\Phi^{238-254} = 0,016 \pm 0,001$ für beide Lösungen; $\Phi^{265-366} < 0,001$ (keine messbare ϵ -Reduktion).

f) Φ -Konzentrationsabhängigkeit (vgl. Fig. 1). Isooctan-Lösungen von **20a** (Konzentrationen: siehe Fig.) wurden bei 245 nm im Aktinometer [36] bis zu maximal 10% Umsatz bestrahlt. $\Phi(20a)$ wurde anhand der Intensitätsabnahme des UV.-Maximums bei 230 nm und $\Phi(40a + 41a)$ durch GC.-Analyse (SE-30; elektronische Integration mit automatischer Nullinien-Korrektur) bestimmt.

g) $0,06 \le 20b$ in Isooctan + 254 nm ergab nach annähernd vollständigem Umsatz und Chromatographie an Kieselgel mit Äther/Hexan 2:1 praktisch quantitativ ein *ca.* 3:1-Gemisch der trans-8,10-Dimethyl-cis-8,9-(1' β - und 8,9-(1' α -methoxy-2'-oxa-propano)-decal-2-one 40b bzw. 41b, das nicht aufgetrennt werden konnte. – IR. (CCl₄): 1047, 1090, 1104, 1722. – NMR. (CCl₄): 0,92 + 1,02/2s, H₃--CC(8 und 10); 3,25 sowie 3,26/2s, H₃--CO; 4,07 sowie 4,17/2s, H--C(1'). – MS. von 40/41b deckungsgleich mit MS. von 40a und 41a.

Bestrahlung von cis-8,10-Dimethyl-8-dimethoxymethyl- $\Delta^{1,9}$; ³-hexal-2-on (22) (Schema 8)¹⁷). 0,0815 M 22 in Isooctan + 254 und > 340 nm führte in jedem Fall zu einem Gemisch von 43 + 44, wobei mit zunehmendem Umsatz der Anteil des zuerst überwiegenden Isomeren 43 zugunsten von 44 zurückging. Die Produkte konnten durch Chromatographie an Kieselgel mit Äther/Hexan 2:1 aufgetrennt werden. trans-1,7-Dimethyl-7-dimethoxymethyl-tricyclo[4.4.0.0^{2,6}]dec-4-en-3-on (43). – IR. (CCl₄): 1076, 1103, 1698. – NMR. (CDCl₃): 0,94 + 1,16/2s, H₃—CC(1 und 7); 3,52 + 3,58/2s, zwei H₃—CC; 4,10/s, H—CC(7); 5,88/d×d, J_{2,4} = 2, J_{4,5} = 6, H—C(4); 7,51/d×d, J_{2,5} = 1,2, J_{4,5} = 6, H—C(5). – MS.: 218 [$M^+(C_{15}H_{22}O_{3})$ —CH₃OH₃DH], 175, 158, 75. 1-Dimethoxymethyl-5(oder 8)-hydroxy-1,8 (oder 1,5)-dimethyl-tertain (44). – IR. (CCl₄): 1000, 1270, 1480, 1540, 1585, 3400 (breit), 3620. – NMR. (CCl₄): 1,20/s, H₃—CC(1); 2,04/s, H₃—C (arom.); 2,56/m, H₂—C(4); 3,25 + 3,32/2s, zwei H₃—CC; 4,16/s, H—CC(1); 6,41 + 7,04/AX, J = 8,5, H—C (6 und 7).

Bestrahlungvon10a-Dimethoxymethyl-1, 2, 3, 9, 10, 10a-hexahydrophenanthr-3-on (26) (Schema8). 0,055 M Lösungen von 26 in MeOH (+254 nm und >340 nm) und Benzol (+>340 nm) wiesen auch nach längerer Bestrahlungsdauer keine Veränderung auf (DS.- und IR.-Kontrollc).

Synthese des Photoproduktes 36 (Schema 9)¹⁷). – 10-Acetoxymethyl- $\Delta^{1,9}$ -octal-2-on (47). 4 g 2-Äthylendioxy-10-hydroxymethyl- Δ^{8} -octalin (46) [33] wurden über Nacht bei RT. in 20 ml Ac₂O und 20 ml Pyridin acetyliert. Das Photoprodukt (2-Äthylendioxy-10-acetoxymethyl- Δ^{8} -octalin) wurde 2 Std. in 50 ml Aceton und 2 ml 5 N Salzsäure bei RT. gehalten. Der Aufarbeitung mit CH₂Cl₂/H₂O schloss sich eine Destillation bei 120° (Badtemp.)/0,1 Torr an: 3,8 g 47 (Ausbeute 77%). – IR.: 1225, 1625, 1680, 1745. – NMR.: 2,03/s, H₃-CCO; 4,15 + 4,36/AB, J = 11,5, H₂-CC(10); 5,77/bs, H--C(1). – MS.: 222 (M^+ ; C₁₃H₁₈O₃), 180, 162, 150.

10-Acetoxymethyl- $\Delta^{1,9;3}$ -hexal-2-on (49). 3,8 g 47 wurden über Nacht mit 4,5 g 2,3-Dichlor-5,6-dicyano-*p*-benzochinon in 50 ml sied. Dioxan dehydriert. Nach dem Abkühlen wurde das ausgefallene Hydrochinon abfiltriert, die Lösung eingedampft und der Rückstand in CH₂Cl₂ durch neutrales Al₂O₃ (Akt. III) filtriert. Die Destillation bei 120° (Badtemp.)/0,1 Torr lieferte 2,0 g 49 (Ausbeute 53%). – IR.: 1040, 1230, 1610, 1640, 1670, 1745. – NMR.: 1,93/s, H₃-CCO; 4,26 + 4,42/AB, J = 11, H₂--CC(10); 6,08/s, H--C(1); 6,18 + 6,75/AX, J = 10,5, H--C(3 bzw. 4). – MS.: 220 (M^+ ; C₁₃H₁₆O₃), 190, 162, 148, 134, 120.

1-Acetoxymethyl-tricyclo[$4.4.0.0^{2}$,⁶]dec-4-en-3-on (50). 2,0 g 49 wurden in 150 ml t-BuOH unter Argon solange mit 254 nm bestrahlt, bis im DC. nebst dem Hauptprodukt (50) erste Sekundärprodukte auftraten (ca. 75% Umsatz). Die Chromatographie an Kieselgel (Benzol/Äthylester 4:1) ergab 870 mg 50 (Ausbeute 54%). – IR.: 1030, 1230, 1570, 1705, 1745. – NMR.: 1,87/bs, H—C(2); 2,02/s, H₃—CCO; 4,15/s, H₂—CC(1); 5,88 + 7,22/AX mit zusätzlichen Feinaufspaltungen, J = 5, H—C(4 bzw. 5). – MS.: 220 (M^+ ; C₁₃H₁₆O₃), 178, 160, 149, 132, 91.

1-Formyl-tricyclo[4.4.0.0^{2,6}]dec-4-en-3-on (51). Die Reduktion von 50 mit (i-Bu)₂AlH nach der Vorschrift für $2 \rightarrow 3$ lieferte mit 96% Ausbeute 1-Hydroxymethyl-tricyclo[4.4.0.0^{2,6}]dec-4-en-3-on [IR.: 1040, 1620, 3030, 3300 (breit), 3600. – NMR.: 3,58 + 3,78/AB, $J = 11, H_2$ —CC(1); 5,15/d, J = 7, H—C(3); 5,48/bs, H—C(4 und 5). – MS.: 162 [$M^+(C_{11}H_{16}O_2)$ —H₂O], 144, 133, 105, 97], das nach der Vorschrift für 10 \rightarrow 11 mit Pyridinchromat oxydiert und aufgearbeitet wurde. Man erhielt 51 in 40% Ausbeute. – IR.: 1575, 1705, 1720 (Schulter), 2700. – NMR.: 6,00 + 7,20/AX, J = 7, H—C(4 und 5); 9,45/s, H—CO. – MS.: 176 (M^+ ; $C_{11}H_{12}O_2$), 148, 147, 120, 97.

1-Dimethoxymethyl-tricyclo[4.4.0.0^{2,6}]dec-4-en-3-on (52). Die Acetalisierung von 51 mit HCl/ McOH (siehe $7 \rightarrow 8$) lieferte 52 im Gemisch mit ca. 20% einer nicht identifizierten Komponente. – IR.: 1080, 1100, 1575, 1705. – NMR.: 1,88/bs, H--C(2); 3,26/s, zwei H₃-CO; 4,02/s, H--CC(1); 5,84 + 7,20/AX mit zusätzlichen Feinaufspaltungen, J = 5, H--C(4 bzw. 5). Das Präparat wurde direkt weiterverarbeitet.

1-Dimethoxymethyl-tricyclo[$4.4.0.0^{2,6}$]decan-3-on (**36**). Eine Lösung von 10% LiAlH₄ in 1 ml Pyridin wurde 1 Tag stehengelassen, dann bei RT. 100 mg **52** (bzgl. Reinheit siehe oben) zugegeben und nach 30 Min. aufgearbeitet. Die Chromatographie an Kieselgel (Benzol/Äthylacetat 4:1) ergab 23 mg **36** (Ausbeute 22%). – IR.: 1080, 1720. – NMR.: 3,23 + 3,33/2s, zwei H₃--CO; 3,86/s, H--CC(1). – MS.: 192 [$M^+(C_{13}H_{20}O_3)$ -MeOH], 150, 149, 122, 91.

Strukturbeweis des Photoproduktes 38 (Schema 9)¹⁷). – 10-Acetoxydideuteriomethyl- $\Delta^{1,9}$ octal-2-on (48-d₂). 5,6 g 2-Äthylendioxy-10-carboäthoxy- Λ^{8} -octalin (45) [33] wurden mit 2 g LiAlD₄ in 500 ml abs. Äther versetzt und das Gemisch 4 Std. bei RT. gerührt. Darauf wurde soviel H₂O zugegeben, dass ein dickflüssiger Brei entstand, der mit MgSO₄ ausgeflockt und abfiltriert wurde. Das Rohprodukt [2-Äthylendioxy-10-hydroxydideuteriomethyl- Δ^{8} -octalin. – IR.: ca. 3400 (breit), 3640. – NMR. (CDCl₃): 3,93/s, H₄-C₂O₂; ca. 5,6/b, H--C(8). – MS.: 226 (M^+ ; C₁₃H₁₈D₂O₃), 194, 99] wurde direkt in 25 ml Pyridin/Ac₂O 1:1 4 Std. auf 90° erhitzt, dann mit CH₂Cl₂/2N Na₂CO₃-Lösung/H₂O aufgearbeitet und verbleibendes Pyridin mit Toluol azeotrop abgedampft. Es resultierten 4,5 g 2-Äthylendioxy-10-acetoxydideuteriomethyl- Δ^{8} -octalin (Ausbeute 85%), von welchem eine Probe gas-chromatographisch gereinigt wurde. – IR.: 1100, 1250, 1740, 2100-2240 (mehrere Banden). – NMR: 1,98/s, H₃-CCO; 3,83/s, H₄-C₂O₃; ca. 5,4/b H--C(8). – MS.: 268 (M^+ ; C₁₅H₂₀D₂O₄), 193, 99. Das restliche Rohprodukt wurde 1 Std. in 50 ml Aceton und 1,5 ml 5N Salzsäure bei RT. gerührt und darauf mit CH₂Cl₂/H₂O zu 3,5 g **48-d₂** (Ausbeute 92%) aufgearbeitet. – IR.: 1250, 1621, 1680, 1746, 2120-2260 (mehrere Banden). – NMR.: 2,00/s, H₃--CCO; 5,73/bs, H--C(1). – MS.: 224 (M^+ ; C₁₃H₁₆D₂O₃), 164, 150, 136, 122, 107.

cis-2-Hydroxy-10-acetoxydideuteriomethyl- $\Delta^{1,9}$ -octalin (53-d₂). 3,5 g 48-d₂ wurden in MeOH bei 0° mit einer wässerigen Lösung von 1,0 g NaBH₄ versetzt, das Gemisch 2 Std. gerührt und darauf mit CH₂Cl₂/H₂O aufgearbeitet. Man erhielt 3,3 g 53-d₂ (Ausbeute 94%). – IR.: 1030, 1070, 1097, 1250, 1657, 1740, 2100–2250 (diverse Banden), 3460 (breit), 3600. – NMR. (CDCl₃): 2,05/s, H₃-CCO; ca. 4,15/b, H--C(2); 5,60/bs, H--C(1). – MS.: 226 (M⁺; C₁₃H₁₈D₂O₃), 208, 184, 183, 166, 138, 91.

cis-1, 2, 9, 10-2-Hydroxy-10-acetoxydideuteriomethyl-1, 9-methanodecalin (54-d₂). 800 mg 53-d₂ wurden bei 0° unter Argon zu 100 ml einer 0,16 m ätherischen $(CH_2)_2ZnJ_2$ -Lösung [37] während 1 Std. getropft und das Gemisch 24 Std. bei RT. gerührt. Die Ätherlösung wurde darauf mit ges. NH₄Cl-Lösung gewaschen und eingedampft. Die Chromatographie an Kieselgel (Benzol/Äthylacetat 1:1) lieferte 195 mg einer Fraktion, die 54-d₂ mit einer Spur Ausgangsmaterial (53-d₂) enthielt, sowie 205 mg reines 54-d₂ (Ausbeute *ca.* 48%). – IR.: 1035, 1080, 1255, 1740, 3400 (breit), 3615. – NMR.: *ca.* 0,1–1,0/mind. 9 Linien (4. und 5. Linie breit), H₃-cyclopropyl; 2,10/s, H₃-CCO; 4,4/m, H-C(2). – MS.: 222 [$M^+(C_{14}H_{20}D_2O_3)$ -H₂O], 180, 165, 162, *147*, 135, 121, 105, 91.

cis-10-Acetoxydideuteriomethyl-1,9-methano-decal-2-on (55- d_2). 195 mg 54- d_2 wurden mit Pyridinchromat oxydiert (vgl. $10 \rightarrow 11$), wobei 160 mg 55- d_2 (Ausbeute 80%) erhalten wurden. – IR.: 1250, 1690, 1742, 2120, 2240, 3010, 3080. – NMR.: 0,5–1,1/mind. 7 Linien, H_2 –C(1'); 2,07/s, H_3 –CCO. – MS.: 238 (*M*⁺; C₁₄ H_{18} D₂O₃), 196, 178, *163*, 135, 121.

cis-10-Hydroxydideuteriomethyl-1,9-methano-decal-2-on $(56-d_2)$. 160 mg $55-d_2$ wurden in 10 ml MeOH gelöst, mit 5 ml 2N wässeriger Na₂CO₃-Lösung versetzt und nach 2 Std. bei RT. mit CH₂Cl₂/H₂O zu 116 mg $56-d_2$ (Ausbeute 88%) aufgearbeitet. – IR.: 1690, 2090, 2200, 3010, 3080, 3450 (breit), 3640.

3,13-Dioxo-12-oxa-tricyclo[4.4.3.0]tridecan (58). 470 mg 38 in 100 ml Aceton wurden bei RT. mit 10 ml einer Lösung von \$ n CrO₃ in \$ n H₂SO₄-Lösung versetzt und das Gemisch über Nacht gerührt. Die Aufarbeitung mit CH₂Cl₂/2 n Na₂CO₃-Lösung/H₂O ergab 350 mg 58 (Ausbeute 80%). Ein Analysenpräparat wurde gas-chromatographisch (SE-30) gereinigt. – IR.: 1020, 1030, 1102, 1120, 1725, 1787. – NMR. (CDCl₃): 3,93 + 4,17/AB, J = 9,2, H₂--C(11). – MS.: 208 (M^+ ; C₁₂H₁₈O₃), 180, 108, 93, 79.

3-Åthylendioxy-13-oxo-12-oxa-tricyclo[4.4.3.0]tridecan (**59**). Ein Gemisch von 320 mg **58**, einer katalyt. Menge p-Toluolsulfonsäure, 300 ml $(CH_2OH)_2$ und 50 ml Benzol wurde 3 Std. im Wasserabscheider gekocht und darauf mit Na₂CO₃-Lösung/H₂O zu 320 mg **59** (Ausbeute 82%) aufgearbeitet. – IR.: 1013, 1081, 1089, 1110, 1220, 1780. – NMR.: 3,65 + 4,28/AX, J = 9, H₂–C(11); 3,87/s, H₄–C₂O₂. – MS.: 252 (M^+ ; C₁₄H₂₀O₄), 194, 152, 149, 134, 99, 86.

3-Åthylendioxy-cis-9-hydroxymethyl-10-hydroxydideuteriomethyl-decalin ($60-d_2$). 320 mg59 wurden 2 Std. bei RT. unter Rühren mit 107 mg LiAlD₄ in 50 ml abs. Äther reduziert. Das Gemisch wurde sodann mit soviel H₂O versetzt, dass ein dickflüssiger Brei entstand, der nach Zugabe von MgSO₄ ausflockte und filtriert werden konnte. Es resultierten 270 mg 60-d₂ (Ausbeute 83%). – IR.: 2100, 2200, 3410 (breit), 3620. – NMR. (CDCl₃): 3,50/Mittelpunkt eines AB-Systems, H₂--CC(9); 3,90/s, H₄--C₂O₂.

2-Äthylendioxy-cis-9-methansulfonyloxymethyl-10-methansulfonyloxydideuteriomethyl-decalin (61-d). Eine Lösung von 270 mg 60-d₂ in 50 ml CH₂Cl₂ wurde bei 0° mit 2 ml Et₃N und 0,6 ml MeSO₂Cl versetzt, 1 Std. bei RT. gerührt und mit NaHCO₃-Lösung/H₂O aufgearbeitet. Die Chromatographie an Kieselgel (Benzol/Äthylacetat 1:1) lieferte 260 mg 61-d₂ (Ausbeute 60%). – IR.: 947, 970, 1170, 1330, 1360. – NMR. (CDCl₃): 3,03 + 3,04/2s, zwei H₃–CS; 3,93/bs, H₄–C₂O₂; 4,21 + 4,37/AB mit Feinaufspaltung, J = 9,5, H₂–-CC(9). – MS.: 318 (M⁺; C₁₄H₂₆D₂O₈S₂), 223, 222, 163, 99, 79.

cis-10-Methansulfonyloxydideuteriomethyl-1,9-methanodecal-2-on (57-d₂). a) Aus 56-d₂. Die Mesylierung von 116 mg 56-d₂ (vgl. $60 \rightarrow 61$) lieferte nach der Chromatographie an Kieselgel (Benzol/Äthylacetat 1:1) 75 mg 57-d₂ (Ausbeute 46%). Smp. 83-84° (krist. aus CCl₄/Hexan). – IR.: 970, 1183, 1350, 1370, 1692, 2100-2300 (diverse Banden), 3015, 3080. – NMR. (CDCl₃): 0,6-1,1/7 Linien (2. und 3. Linie stark verbreitert), H₂--C(1'); 2,22-2,40/6 Linien (2H); 3,06/s, H₃--CS. – MS.: 274 (M⁺; C₁₃H₁₈D₂O₄S), 178, 163, 149.

b) $Aus 61-d_2$. Eine Lösung von 130 mg $61-d_2$ und 100 mg p-Toluolsulfonsäure in 30 ml Aceton und 3 ml H₂O wurde einige Std. bei RT. gerührt, bis nach DC. (Benzol/Äthylacetat 1:1) das Ausgangsmaterial vollständig umgesetzt war. Die Aufarbeitung mit CH₂Cl₂/NaHCO₃-Lösung/H₂O lieferte ein ca. 1:1-Gemisch von cis-10-Methansulfonyloxydideuteriomethyl-9-methansulfonyloxymethyl-decal-2-on ($62-d_2$; IR.: 1710) und $57-d_2$ (IR.: 1680). Das Rohgemisch wurde 2 Std. bei RT. in 20 ml ges. methanolischer K₂CO₃-Lösung gerührt, darauf mit CH₂Cl₂/H₂O aufgearbeitet und das Rohprodukt an Kieselgel (Benzol/Äthylacetat 1:1) chromatographiert. Es resultierten 74 mg 57-d₂ (Ausbeute bzgl. $61-d_2$ 86%; Identifikation mittels Misch-Smp., IR., NMR. und MS.).

Strukturbeweis des Photoproduktes 39 (Schema 10)¹⁷). – exo-10-Dimethoxymethyl-5,5,10trideuterio-tricyclo[4.3.1.0]decan-7-on (**39-d**₃)¹⁸). Eine Probe von **39-d**₅ wurde 3 Std. bei RT. in einer Lösung von 20% KOH in MeOH/H₂O 1:1 gehalten. Nach der Aufarbeitung mit CH₂Cl₂/H₂O und gaschromatographischen Reinigung (SE-30) enthielt das Präparat nach MS. 13% d₂ und 87% d₃.

 $3a-(\beta-Methoxy-vinyl)-7a\xi-hydrindan-1-on$ (63). 53 mg eines 2:1-Gemisches von 39 und 12 in 1 ml abs. Äther wurden einer Lösung von 50 mg Li in 7 ml flüssigem NH₃ zugefügt und 2 Std. bei -80° gerührt. Dann wurde das Reaktionsgemisch mit festem NH₄Cl versetzt und nach dem Abdampfen von NH₃ mit ges. NH₄Cl-Lösung/CH₂Cl₂ aufgearbeitet. Die Nachoxydation des Rohproduktes mit Pyridinchromat (vgl. 10 \rightarrow 11) ergab 25 mg eines 2:1-Gemisches von 63 und Dihydro-12 (Ausbeute 54%). 63 wurde daraus gas-chromatographisch (SE-30) abgetrennt. - IR.: 940, 1650 (stark), 1740, 2860. – NMR.: 3,54/s, H_3 –CO; 4,85 + 6,36/AX, J = 13, H–C(1' bzw. 2'). – MS.: 194 (M+; $C_{12}H_{18}O_2$), 179, 163, 138.

Die basenkatalysierte Deuterierung von 63 (vgl. $9 \rightarrow 9 \cdot d_3$) lieferte, unter leichter Zersetzung des Produktes, ein maximal trideuteriertes Derivat, das gas-chromatographisch isoliert wurde (SE-30). – MS.: 3% d₀, 7% d₁, 35% d₂, 56% d₃.

exo-10-Dimethoxymethyl-tricyclo[4.3.1.0]decan-7-exo-ol (64)¹⁸). 89 mg 39 in 5 ml McOH wurden bei RT. mit einer wässerigen Lösung von 25 mg NaBH₄ versetzt und nach beendigter Reduktion (DC.-Kontrolle) mit CH₂Cl₂/H₂O aufgearbeitet. Man erhielt 65 mg 64 (Ausbeute 73%), die ohne weitere Reinigung weiterverwendet wurden. – IR.: 3490 (breit), 3620. – NMR.: 0,90 + 4,53/AX, J = 6,7, H--C(10) bzw. H--CC(10); 3,30/s, zwei H₃-CO; 4,2/m, H--C(7).

endo-9-Methoxy-8-oxa-tetracyclo[$5.3.2.0^{1,6}.0^{6,10}$]dodecan (**65**)¹⁸). Die Behandlung von 65 mg **64** bei RT. mit 10 mg (CO₂H)₂ in MeOH während 1 Std., Aufarbeitung mit CH₂Cl₂/Na₂CO₃-Lösung/H₂O und Chromatographie an Kieselgel (Benzol/Äthylacetat 4:1) ergab 51 mg **65** (Ausbeute 89%). – IR.: 975, 1010, 1070, 1110, 1197 (alle Banden sehr scharf). – NMR.: 1,0–1,4 und 1,4–2,4/2m, (12H); 1,46/s, H—C(10); 3,20/s, H₃—CO; 4,43/bs und 4,78/s, H—C(7 und 9). – MS.: 194 (M^+ ; C₁₂H₁₈O₂), 163, 162, 121, 91.

8-Oxa-tetracyclo[$5.3.2.0^{1,6}.0^{6,10}$]dodecan-9-on (**66**). 32 mg **65** wurden in 3 ml Aceton 30 Min. bei 0° mit 200 µl einer 8N CrO₃-Lösung in 8N H₂SO₄ behandelt und darauf mit CH₂Cl₂/NaHCO₃-Lösung/H₂O aufgearbeitet. Das Rohprodukt erwies sich nach DC. (Benzol/Äthylacetat 4:1) und Gas-Chromatographie (SE-30) als einheitlich. Zur Analyse wurde eine Probe gas-chromatographisch gesammelt. – IR.: 984, 1008, 1135, 1195, 1333, 1770 (alle Banden schr scharf). – NMR.: 0,8–1,6 und 1,6–2,4/2m, (13H); 4,58/s, H--C(7). – MS.: 178 (C₁₁H₁₄O₂), 150, *122*.

Chemische Umwandlungen der Photoprodukte 40a und 41a (Schema 11)¹⁷). – C(1')-Epimerisierungen von 40a und 41a. Beide Produkte konnten in McOH mit einer katalytischen Menge konz. Salzsäure bei RT. zu einem Gemisch von 40a + 41a äquilibriert werden (DC.-Kontrolle; Äther/Hexan 2:1).

cis-10-Dimethyl-cis-8, 9 (1' ξ -acetoxy-2'-oxa-propano)-decal-2-on (67). Eine Lösung von 200 mg 40a und 20 mg p-Toluolsulfonsäure in 8 ml AcOH wurde 6 Std. bei RT. gehalten und darauf mit CH₂Cl₂/H₂O/cisgekühlter Na₂CO₃-Lösung/H₂O zu 195 mg 67 (Ausbeute 90%) aufgearbeitet. Smp. 165-167° (krist. aus Äther/Hexan). – IR.: 940, 958, 973, 990, 1015, 1090, 1233, 1710, 1745. – NMR.: 1,02 + 1,26/2s, H₃--CC(8 und 10); 2,04/s, H₃--CCO; 3,56/d, J_{gem} = 8,7, H--C(3' α); 4,06/d×d, J_{gem} = 8,7, J_{3 β ,1_x} = 2,6, H--C(3' β); 5,64/s, H--C(1'). – MS.: 280 (M⁺; C₁₆H₂₄O₄), 237, 221, 192, 177, 163, 149, 136.

Das gleiche Produkt wurde auch aus 41 a auf analoge Weise erhalten.

Gemisch der C(1')-epimeren cis-10,8-Dimethyl-cis-8,9(1'-hydroxy-2'-oxa-propano)-decal-2-one (68). 195 mg 67 wurden in 10 ml McOH und 5 ml 2N Na₂CO₃-Lösung 2 Std. bei RT. hydrolysiert and darauf mit CH₂Cl₂/H₂O zu 153 mg eines ca. 2:3-Gemisches 68 (Ausbeute 91%) aufgearbeitet, das direkt weiterverarbeitet wurde. – IR. (CHCl₃): 995, 1045, 1700, 3400 (breit), 3590. – NMR. (CDCl₃): 1,03 und 1,10 (3H) + 1,27 (3H)/3s, H₃–CC(8 und 10); ca. 3,1/d, $J_{gem} = 16$, H–C(1 β); 3,31 und 3,56/2d, $J_{gem} = 8$, H–C(3' β); 4,08/d×d, $J_{gem} = 8$, $J_{1\alpha,3'\alpha} = 2,5$ sowie 4,24/d×d, $J_{gem} = 8$, $J_{1\alpha,3'\alpha} = 1,2$, H₂–C(3' α); 4,78/d, $J_{1',OH} = 2,5$ sowie 5,07/d, $J_{1',OH} = 6,5$, H–C(1').

cis-8, 10-Dimethyl-cis-8, 9 (1'-oxo-2'-oxa-propano)-decal-2-on (69). 150 mg 68 wurden bei 0° mit $CrO_3/H_2SO_4/Accton (vgl. 38 \rightarrow 58)$ zu 126 mg 69 oxydiert (Ausbeute 84%). Smp. 127–131° (krist. aus CH_2Cl_2 -Hexan). – IR.: 1003, 1033, 1064, 1100, 1145, 1385, 1715, 1785. – NMR.: 1,18 + 1,30/2s, H_3 –CC(8 und 10); 3,59/d, $J_{gem} = 9,3$, H–C(3' β); 4,28/d×d, $J_{gem} = 9,3$, $J_{1\alpha,3'\alpha} = 2,7$, H–C(3' α). – MS.: 236 (M⁺; $C_{14}H_{20}O_3$), 221, 208, 192, 177, 136.

Verknüpfung der Photoprodukte 38 (Schema 6) und 42 (Schema 8). – Die Hydrierung von 42 mit 10proz. Pd/C in MeOH-Lösung bei RT. lieferte quantitativ 38 [Identifikation mit GC. (SE-30), NMR., IR. und MS.].

Die Elementaranalysen wurden im mikroanalytischen Laboratorium der ETHZ (Leitung: W. Manser) ausgeführt. Die Aufnahme der 100 MHz-NMR.-Spektren verdanken wir den Herren Prof. Dr. J. F. M. Oth (ETHZ) und Dr. U. Burger (Universität Genf), und diejenige der Massenspektren den Herren Prof. Dr. J. Seibl (ETHZ), Prof. Dr. A. Buchs (Universität Genf) und Dr. B. Willhalm (Firmenich SA, Genf).

LITERATURVERZEICHNIS

- [1] 76. Mitt.: P. Gull, Y. Saito, H. Wehrli & O. Jeger, Helv. 57, 863 (1974).
- [2] a) J. Gloor, K. Schaffner & O. Jeger, Helv. 54, 1864 (1971); b) J. Gloor, G. Bernardinelli, R. Gerdil & K. Schaffner, ibid. 56, 2520 (1973).
- [3] a) K. Schaffner, Pure appl. Chemistry 33, 329 (1973); b) J. Gloor & K. Schaffner, Chimia 25, 417 (1971); c) J. Gloor, F. Nobs & K. Schaffner, ibid. 28, 22 (1974).
- [4] M. Karvaś, F. Marti, H. Wehrli, K. Schaffner & O. Jeger, Helv. 57, 1851 (1974).
- [5] a) D. Belluš, D. R. Kearns & K. Schaffner, Helv. 52, 971 (1969); b) P. Margaretha & K. Schaffner, ibid. 56, 2884 (1973).
- [6] Cf. D. Valentine, N. J. Turro & G. S. Hammond, J. Amer. chem. Soc. 86, 5202 (1964).
- [7] K. Schaffner, Adv. Photochemistry 4, 81 (1966).
- [8] G. Bernardinelli & R. Gerdil, Helv. 57, 1846 (1974).
- [9] J. Meinwald & Y. C. Meinwald, J. Amer. chem. Soc. 85, 2514 (1963); M. Barfield, ibid. 93, 1066 (1971); R. J. Abraham, M. A. Cooper, J. R. Salmon & D. Whittaker, Org. Magn. Res. 4, 489 (1972); V. Mark, Tetrahedron Letters 1974, 299.
- [10] H. Dutler, C. Ganter, H. Ryf, E. C. Utzinger, K. Weinberg, K. Schaffner, D. Arigoni & O. Jeger, Helv. 45, 2346 (1962); J. Frei, C. Ganter, D. Kägi, K. Kocsis, M. Miljković, A. Siewinski, R. Wenger, K. Schaffner & O. Jeger, ibid. 49, 1049 (1966).
- [11] G. Marsh, D. R. Kearns & K. Schaffner, J. Amer. chem. Soc. 93, 3129 (1971).
- [12] H. Wehrli, C. Lehmann, P. Keller, J.-J. Bonet, K. Schaffner & O. Jeger, Helv. 49, 2218 (1966);
 H. Wehrli, C. Lehmann, T. Iizuka, K. Schaffner & O. Jeger, ibid. 50, 2403 (1967).
- [13] J. A. Saboz, T. Iizuka, H. Wehrli, K. Schaffner & O. Jeger, Helv. 51, 1362 (1968).
- [14] S. Kuwata & K. Schaffner, Helv. 52, 173 (1969).
- [15] E. Baggiolini, H. G. Berscheid, G. Bozzato, E. Cavalieri, K. Schaffner & O. Jeger, Helv. 54, 429 (1971).
- [16] W. H. Pirkle, S. G. Smith & G. F. Koser, J. Amer. chem. Soc. 91, 1582 (1969).
- [17] L. E. Friedrich & G. B. Schuster, J. Amer. chem. Soc. 91, 7204 (1969).
- [18] B. R. von Wartburg, H. R. Wolf & O. Jeger, Helv. 56, 1948 (1973).
- [19] D. Bauer, T. Iizuka, K. Schaffner & O. Jeger, Helv. 55, 852 (1972).
- [20] R. Simonaitis & J. N. Pitts, Jr., J. Amer. chem. Soc. 91, 108 (1969).
- [21] E. F. Ullman, Accounts chem. Res. 1, 353 (1968); siehe ferner R. W. Hoffmann & K. R. Eicken, Chem. Ber. 102, 2987 (1969); J.G. Pacifici & C. Diebert, J. Amer. chem. Soc. 91, 4595 (1969); E. F. Ullman & N. Baumann, ibid. 92, 5892 (1970).
- [22] R. B. Woodward & R. Hoffmann, Die Erhaltung der Orbitalsymmetrie (Verlag Chemie GmbH., 1970).
- [23] J. J. Hurst & G. W. Witham, J. chem. Soc. 1960, 2464; W. F. Erman, J. Amer. chem. Soc. 89, 3828 (1967).
- [24] D. I. Schuster & D. Widman, Tetrahedron Letters 1971, 3571; J. R. Scheffer, K. S. Bhandari, R. E. Gayler & R. H. Wiekenkamp, J. Amer. chem. Soc. 94, 285 (1972).
- [25] R. L. Cargill, B. M. Gimarc, D. M. Pond, T. Y. King. A. B. Sears & M. R. Willcott, J. Amer. chem. Soc. 92, 3809 (1970).
- [26] S. S. Hixson, P. S. Mariano & H. E. Zimmerman, Chem. Rev. 73, 531 (1973).
- [27] J. R. Williams & H. Ziffer, Tetrahedron 24, 6725 (1968); J. R. Williams & G. M. Sarhisian, Chem. Commun. 1971, 1564.
- [28] T. Kobayashi, M. Kurono, H. Sato & K. Nakanishi, J. Amer. chem. Soc. 94, 2863 (1972).
- [29] L. E. Friedrich & G. B. Schuster, J. Amer. chem. Soc. 94, 1193 (1972).
- [30] K. Schaffner, Pure Appl. Chemistry, Suppl. 1, 405 (1971), und dortige Literaturhinweise.
- [31] H. Plieninger, L. Arnold & W. Hoffmann, Chem. Ber. 98, 1399 (1965).
- [32] E. Baggiolini, H. P. Hamlow & K. Schaffner, J. Amer. chem. Soc. 92, 4906 (1970).
- [33] L. S. Minckler, A. S. Hussey & R. H. Baker, J. Amer. chem. Soc. 78, 1009 (1956).
- [34] D. K. Banerjee & S. N. Mahapatra, Tetrahedron 11, 234 (1960).
- [35] P. Wieland & K. Miescher, Helv. 33, 2215 (1950).
- [36] W. Amrein, J. Gloor & K. Schaffner, Chimia 28, 185 (1974).
- [37] G. Wittig & F. Wingler, Liebigs Ann. Chem. 656, 18 (1962).